{"title":"COVID-19 大流行病中的模糊逻辑分析综述,以及通过扩展六边形直觉模糊数分析 COVID-19 的新技术","authors":"Laxmi Rathour , Vinay Singh , M.K. Sharma , Nitesh Dhiman , Vishnu Narayan Mishra","doi":"10.1016/j.rico.2024.100498","DOIUrl":null,"url":null,"abstract":"<div><div>Several intuitionistic fuzzy logic approaches have been used for the diagnosis of COVID-19 patients. We have developed a fuzzy rule base system for the detection of COVID-19 patients. In this study, we have considered six major parameters based symmetric/asymmetric, linear/non-linear hexagonal intuitionistic fuzzy numbers (HIFN) for the input-output factors of the problem. In real-life diagnosis problems, such as assessing COVID-19 symptoms, applying symmetric and asymmetric, linear and non-linear hexagonal intuitionistic fuzzy numbers allows for a more accurate representation of patient conditions. Centre of area method is used for the defuzzied value of the hexagonal intuitionistic fuzzy parameters. HIFN are used because they provide a detailed representation of uncertainty, incorporating both membership and non-membership degrees through six parameters. This flexibility allows for nuanced modelling of real-world scenarios, such as medical diagnoses, where data often includes ambiguity. Then the HIFN approach is used for obtaining the compromising and superlative solution in the diagnostic process of COVID-19 patients. To figure out the adaptability of the proposed HIFN based technique, a comparative study is also introduced. The originality, limitations, future aspects and advantages of using this HIFN based technique is also discussed in this article.</div></div>","PeriodicalId":34733,"journal":{"name":"Results in Control and Optimization","volume":"17 ","pages":"Article 100498"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A review of fuzzy logic analysis in COVID-19 pandemic and a new technique through extended hexagonal intuitionistic fuzzy number in analysis of COVID-19\",\"authors\":\"Laxmi Rathour , Vinay Singh , M.K. Sharma , Nitesh Dhiman , Vishnu Narayan Mishra\",\"doi\":\"10.1016/j.rico.2024.100498\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Several intuitionistic fuzzy logic approaches have been used for the diagnosis of COVID-19 patients. We have developed a fuzzy rule base system for the detection of COVID-19 patients. In this study, we have considered six major parameters based symmetric/asymmetric, linear/non-linear hexagonal intuitionistic fuzzy numbers (HIFN) for the input-output factors of the problem. In real-life diagnosis problems, such as assessing COVID-19 symptoms, applying symmetric and asymmetric, linear and non-linear hexagonal intuitionistic fuzzy numbers allows for a more accurate representation of patient conditions. Centre of area method is used for the defuzzied value of the hexagonal intuitionistic fuzzy parameters. HIFN are used because they provide a detailed representation of uncertainty, incorporating both membership and non-membership degrees through six parameters. This flexibility allows for nuanced modelling of real-world scenarios, such as medical diagnoses, where data often includes ambiguity. Then the HIFN approach is used for obtaining the compromising and superlative solution in the diagnostic process of COVID-19 patients. To figure out the adaptability of the proposed HIFN based technique, a comparative study is also introduced. The originality, limitations, future aspects and advantages of using this HIFN based technique is also discussed in this article.</div></div>\",\"PeriodicalId\":34733,\"journal\":{\"name\":\"Results in Control and Optimization\",\"volume\":\"17 \",\"pages\":\"Article 100498\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Control and Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666720724001280\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Control and Optimization","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666720724001280","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
A review of fuzzy logic analysis in COVID-19 pandemic and a new technique through extended hexagonal intuitionistic fuzzy number in analysis of COVID-19
Several intuitionistic fuzzy logic approaches have been used for the diagnosis of COVID-19 patients. We have developed a fuzzy rule base system for the detection of COVID-19 patients. In this study, we have considered six major parameters based symmetric/asymmetric, linear/non-linear hexagonal intuitionistic fuzzy numbers (HIFN) for the input-output factors of the problem. In real-life diagnosis problems, such as assessing COVID-19 symptoms, applying symmetric and asymmetric, linear and non-linear hexagonal intuitionistic fuzzy numbers allows for a more accurate representation of patient conditions. Centre of area method is used for the defuzzied value of the hexagonal intuitionistic fuzzy parameters. HIFN are used because they provide a detailed representation of uncertainty, incorporating both membership and non-membership degrees through six parameters. This flexibility allows for nuanced modelling of real-world scenarios, such as medical diagnoses, where data often includes ambiguity. Then the HIFN approach is used for obtaining the compromising and superlative solution in the diagnostic process of COVID-19 patients. To figure out the adaptability of the proposed HIFN based technique, a comparative study is also introduced. The originality, limitations, future aspects and advantages of using this HIFN based technique is also discussed in this article.