Yafei Liu , Na Liu , Hao Li , Yi Jiang , Junwu zhu
{"title":"RDSM:三维空间中的水下多AUV中继部署和选择机制","authors":"Yafei Liu , Na Liu , Hao Li , Yi Jiang , Junwu zhu","doi":"10.1016/j.cogr.2024.11.001","DOIUrl":null,"url":null,"abstract":"<div><div>Underwater Wireless Sensor Networks (UWSNs) are widely used in naval military field and marine resource exploration. However, challenges such as resource inefficiency and unbalanced energy consumption severely hinder their practical applications. In this paper, we establish a model of underwater multi-hop wireless sensor network with multiple AUVs as relay nodes, which describes the data transmission process within the network. Based on this, an underwater multi-AUV Relay Deployment and Selection Mechanism in 3D space (RDSM) is proposed to achieve efficient underwater networking. Specifically, the RDSM includes the following key components. Firstly, an optimized relay node deployment strategy (RNDS) is used to deploy AUV nodes to effectively ensure network connectivity. Compared with traditional methods, this strategy has unique advantages in considering underwater space characteristics and can better adapt to the complex underwater environment. Secondly, a new utility function is constructed by integrating factors such as throughput, energy consumption, and load. The relay selection strategy based on utility maximization (RSS-UM) is used to select the next-hop relay node. This strategy is innovative in improving relay selection efficiency and optimizing network performance. Finally, in response to the problem of rapid energy consumption of relay nodes close to the base station, a power adjustment scheme is introduced to achieve a balance in node energy consumption, which is of great significance for prolonging network lifetime and improving overall stability. Experimental results show that compared with existing methods, the proposed mechanism achieves high utility and throughput, while maintaining balanced node energy consumption.</div></div>","PeriodicalId":100288,"journal":{"name":"Cognitive Robotics","volume":"4 ","pages":"Pages 204-216"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RDSM: Underwater multi-AUV relay deployment and selection mechanism in 3D space\",\"authors\":\"Yafei Liu , Na Liu , Hao Li , Yi Jiang , Junwu zhu\",\"doi\":\"10.1016/j.cogr.2024.11.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Underwater Wireless Sensor Networks (UWSNs) are widely used in naval military field and marine resource exploration. However, challenges such as resource inefficiency and unbalanced energy consumption severely hinder their practical applications. In this paper, we establish a model of underwater multi-hop wireless sensor network with multiple AUVs as relay nodes, which describes the data transmission process within the network. Based on this, an underwater multi-AUV Relay Deployment and Selection Mechanism in 3D space (RDSM) is proposed to achieve efficient underwater networking. Specifically, the RDSM includes the following key components. Firstly, an optimized relay node deployment strategy (RNDS) is used to deploy AUV nodes to effectively ensure network connectivity. Compared with traditional methods, this strategy has unique advantages in considering underwater space characteristics and can better adapt to the complex underwater environment. Secondly, a new utility function is constructed by integrating factors such as throughput, energy consumption, and load. The relay selection strategy based on utility maximization (RSS-UM) is used to select the next-hop relay node. This strategy is innovative in improving relay selection efficiency and optimizing network performance. Finally, in response to the problem of rapid energy consumption of relay nodes close to the base station, a power adjustment scheme is introduced to achieve a balance in node energy consumption, which is of great significance for prolonging network lifetime and improving overall stability. Experimental results show that compared with existing methods, the proposed mechanism achieves high utility and throughput, while maintaining balanced node energy consumption.</div></div>\",\"PeriodicalId\":100288,\"journal\":{\"name\":\"Cognitive Robotics\",\"volume\":\"4 \",\"pages\":\"Pages 204-216\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cognitive Robotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667241324000144\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Robotics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667241324000144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
RDSM: Underwater multi-AUV relay deployment and selection mechanism in 3D space
Underwater Wireless Sensor Networks (UWSNs) are widely used in naval military field and marine resource exploration. However, challenges such as resource inefficiency and unbalanced energy consumption severely hinder their practical applications. In this paper, we establish a model of underwater multi-hop wireless sensor network with multiple AUVs as relay nodes, which describes the data transmission process within the network. Based on this, an underwater multi-AUV Relay Deployment and Selection Mechanism in 3D space (RDSM) is proposed to achieve efficient underwater networking. Specifically, the RDSM includes the following key components. Firstly, an optimized relay node deployment strategy (RNDS) is used to deploy AUV nodes to effectively ensure network connectivity. Compared with traditional methods, this strategy has unique advantages in considering underwater space characteristics and can better adapt to the complex underwater environment. Secondly, a new utility function is constructed by integrating factors such as throughput, energy consumption, and load. The relay selection strategy based on utility maximization (RSS-UM) is used to select the next-hop relay node. This strategy is innovative in improving relay selection efficiency and optimizing network performance. Finally, in response to the problem of rapid energy consumption of relay nodes close to the base station, a power adjustment scheme is introduced to achieve a balance in node energy consumption, which is of great significance for prolonging network lifetime and improving overall stability. Experimental results show that compared with existing methods, the proposed mechanism achieves high utility and throughput, while maintaining balanced node energy consumption.