Man Wang , Liang Li , Jianjun Ma , Jun Wu , Xiuli Du
{"title":"通过周动态模拟研究纤维增强水泥基复合材料的损伤和断裂行为","authors":"Man Wang , Liang Li , Jianjun Ma , Jun Wu , Xiuli Du","doi":"10.1016/j.tafmec.2024.104758","DOIUrl":null,"url":null,"abstract":"<div><div>A novel numerical model for the damage and fracture behaviors of fiber-reinforced cementitious composites (FRCC) is introduced based on Peridynamic (PD) theory. This Peridynamic fiber-reinforced Cementitious Composites (PD-FRCC) model improves the bond-based PD theory’s capability to describe the intrinsic microstructural heterogeneity and macroscopic nonlinear mechanical properties of cementitious by introducing key damage correction factors. A semi-discrete method is used to simulate the reinforcement effect of fibers, where a proportion of cementitious matrix bonds are randomly selected as fiber-reinforced bonds based on fiber content and length. The effectiveness and stability of the proposed numerical model are validated by numerical simulation examples. These examples include tensile tests of single-fiber cementitious plates, static tensile tests of steel-polyethylene hybrid fiber reinforced engineered cementitious composites (ST/PE-ECC), and tensile failure simulations of double-notched beams. The results demonstrate that the proposed numerical model accurately captures the complex morphology and propagation of FRCC cracks, and showcases high predictive accuracy. The significant impact of fiber bridging on material toughness and ductility during crack propagation is emphasized, revealing that fibers not only suppress initial crack growth but also lead crack propagation along complex paths, thereby extending crack propagation time and enhancing fracture resistance.</div></div>","PeriodicalId":22879,"journal":{"name":"Theoretical and Applied Fracture Mechanics","volume":"134 ","pages":"Article 104758"},"PeriodicalIF":5.0000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on the damage and fracture behaviors of fiber-reinforced cementitious composites by peridynamic simulation\",\"authors\":\"Man Wang , Liang Li , Jianjun Ma , Jun Wu , Xiuli Du\",\"doi\":\"10.1016/j.tafmec.2024.104758\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A novel numerical model for the damage and fracture behaviors of fiber-reinforced cementitious composites (FRCC) is introduced based on Peridynamic (PD) theory. This Peridynamic fiber-reinforced Cementitious Composites (PD-FRCC) model improves the bond-based PD theory’s capability to describe the intrinsic microstructural heterogeneity and macroscopic nonlinear mechanical properties of cementitious by introducing key damage correction factors. A semi-discrete method is used to simulate the reinforcement effect of fibers, where a proportion of cementitious matrix bonds are randomly selected as fiber-reinforced bonds based on fiber content and length. The effectiveness and stability of the proposed numerical model are validated by numerical simulation examples. These examples include tensile tests of single-fiber cementitious plates, static tensile tests of steel-polyethylene hybrid fiber reinforced engineered cementitious composites (ST/PE-ECC), and tensile failure simulations of double-notched beams. The results demonstrate that the proposed numerical model accurately captures the complex morphology and propagation of FRCC cracks, and showcases high predictive accuracy. The significant impact of fiber bridging on material toughness and ductility during crack propagation is emphasized, revealing that fibers not only suppress initial crack growth but also lead crack propagation along complex paths, thereby extending crack propagation time and enhancing fracture resistance.</div></div>\",\"PeriodicalId\":22879,\"journal\":{\"name\":\"Theoretical and Applied Fracture Mechanics\",\"volume\":\"134 \",\"pages\":\"Article 104758\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical and Applied Fracture Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167844224005081\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Fracture Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167844224005081","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Study on the damage and fracture behaviors of fiber-reinforced cementitious composites by peridynamic simulation
A novel numerical model for the damage and fracture behaviors of fiber-reinforced cementitious composites (FRCC) is introduced based on Peridynamic (PD) theory. This Peridynamic fiber-reinforced Cementitious Composites (PD-FRCC) model improves the bond-based PD theory’s capability to describe the intrinsic microstructural heterogeneity and macroscopic nonlinear mechanical properties of cementitious by introducing key damage correction factors. A semi-discrete method is used to simulate the reinforcement effect of fibers, where a proportion of cementitious matrix bonds are randomly selected as fiber-reinforced bonds based on fiber content and length. The effectiveness and stability of the proposed numerical model are validated by numerical simulation examples. These examples include tensile tests of single-fiber cementitious plates, static tensile tests of steel-polyethylene hybrid fiber reinforced engineered cementitious composites (ST/PE-ECC), and tensile failure simulations of double-notched beams. The results demonstrate that the proposed numerical model accurately captures the complex morphology and propagation of FRCC cracks, and showcases high predictive accuracy. The significant impact of fiber bridging on material toughness and ductility during crack propagation is emphasized, revealing that fibers not only suppress initial crack growth but also lead crack propagation along complex paths, thereby extending crack propagation time and enhancing fracture resistance.
期刊介绍:
Theoretical and Applied Fracture Mechanics'' aims & scopes have been re-designed to cover both the theoretical, applied, and numerical aspects associated with those cracking related phenomena taking place, at a micro-, meso-, and macroscopic level, in materials/components/structures of any kind.
The journal aims to cover the cracking/mechanical behaviour of materials/components/structures in those situations involving both time-independent and time-dependent system of external forces/moments (such as, for instance, quasi-static, impulsive, impact, blasting, creep, contact, and fatigue loading). Since, under the above circumstances, the mechanical behaviour of cracked materials/components/structures is also affected by the environmental conditions, the journal would consider also those theoretical/experimental research works investigating the effect of external variables such as, for instance, the effect of corrosive environments as well as of high/low-temperature.