微型化双模连续波和脉冲泵浦 ODNP 平台

IF 2.624
Qing Yang , Hadi Lotfi , Michal Kern , Frederik Dreyer , Mazin Jouda , Jan. G. Korvink , Bernhard Blümich , Jens Anders
{"title":"微型化双模连续波和脉冲泵浦 ODNP 平台","authors":"Qing Yang ,&nbsp;Hadi Lotfi ,&nbsp;Michal Kern ,&nbsp;Frederik Dreyer ,&nbsp;Mazin Jouda ,&nbsp;Jan. G. Korvink ,&nbsp;Bernhard Blümich ,&nbsp;Jens Anders","doi":"10.1016/j.jmro.2024.100174","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we present the design and experimental validation of a miniaturized Overhauser dynamic nuclear polarization (ODNP) platform for both continuous-wave (CW) and pulsed DNP enhancement experiments at a <span><math><msub><mrow><mi>B</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> field strength of 0.25<!--> <!-->T. The platform is centered around chip-integrated nuclear magnetic resonance (NMR) and microwave (MW) electronics and further incorporates a custom-designed laser-engraved ODNP probe, providing phase-coherent radio frequency (RF) excitation, low-noise amplification and acquisition of NMR signals, MW frequency synthesis, MW signal modulation, and MW power amplification. An experimental validation using TEMPOL solutions with different concentrations demonstrates the functionality and good performance of the presented ODNP platform. A maximum enhancement of <span><math><mrow><mo>−</mo><mn>92</mn></mrow></math></span> with CW pumping was achieved using a 500<!--> <!-->nL 10<!--> <!-->mM non-degassed TEMPOL solution in water, representing the largest enhancement achieved to date in a chip-based ODNP platform. We also include a preliminary comparison between CW pumping and pulsed pumping using TEMPOL solutions with different electron relaxation times (apparent <span><math><msub><mrow><mi>T</mi></mrow><mrow><msup><mrow><mn>1</mn><mi>e</mi></mrow><mrow><mo>∗</mo></mrow></msup></mrow></msub></math></span> and <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>2e</mi></mrow></msub></math></span>). Our study indicates that, for a power-limited miniaturized ODNP platform, pulsed pumping can surpass CW pumping in power efficiency for a given average power when the solution possesses a sufficiently long electron spin-lattice relaxation time.</div></div>","PeriodicalId":365,"journal":{"name":"Journal of Magnetic Resonance Open","volume":"21 ","pages":"Article 100174"},"PeriodicalIF":2.6240,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A miniaturized dual-mode continuous-wave and pulsed pumping ODNP platform\",\"authors\":\"Qing Yang ,&nbsp;Hadi Lotfi ,&nbsp;Michal Kern ,&nbsp;Frederik Dreyer ,&nbsp;Mazin Jouda ,&nbsp;Jan. G. Korvink ,&nbsp;Bernhard Blümich ,&nbsp;Jens Anders\",\"doi\":\"10.1016/j.jmro.2024.100174\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we present the design and experimental validation of a miniaturized Overhauser dynamic nuclear polarization (ODNP) platform for both continuous-wave (CW) and pulsed DNP enhancement experiments at a <span><math><msub><mrow><mi>B</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> field strength of 0.25<!--> <!-->T. The platform is centered around chip-integrated nuclear magnetic resonance (NMR) and microwave (MW) electronics and further incorporates a custom-designed laser-engraved ODNP probe, providing phase-coherent radio frequency (RF) excitation, low-noise amplification and acquisition of NMR signals, MW frequency synthesis, MW signal modulation, and MW power amplification. An experimental validation using TEMPOL solutions with different concentrations demonstrates the functionality and good performance of the presented ODNP platform. A maximum enhancement of <span><math><mrow><mo>−</mo><mn>92</mn></mrow></math></span> with CW pumping was achieved using a 500<!--> <!-->nL 10<!--> <!-->mM non-degassed TEMPOL solution in water, representing the largest enhancement achieved to date in a chip-based ODNP platform. We also include a preliminary comparison between CW pumping and pulsed pumping using TEMPOL solutions with different electron relaxation times (apparent <span><math><msub><mrow><mi>T</mi></mrow><mrow><msup><mrow><mn>1</mn><mi>e</mi></mrow><mrow><mo>∗</mo></mrow></msup></mrow></msub></math></span> and <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>2e</mi></mrow></msub></math></span>). Our study indicates that, for a power-limited miniaturized ODNP platform, pulsed pumping can surpass CW pumping in power efficiency for a given average power when the solution possesses a sufficiently long electron spin-lattice relaxation time.</div></div>\",\"PeriodicalId\":365,\"journal\":{\"name\":\"Journal of Magnetic Resonance Open\",\"volume\":\"21 \",\"pages\":\"Article 100174\"},\"PeriodicalIF\":2.6240,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Magnetic Resonance Open\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666441024000293\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Magnetic Resonance Open","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666441024000293","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们介绍了微型化 Overhauser 动态核偏振(ODNP)平台的设计和实验验证,该平台可用于 0.25 T B0 场强下的连续波(CW)和脉冲 DNP 增强实验。该平台以芯片集成的核磁共振(NMR)和微波(MW)电子器件为核心,进一步集成了定制设计的激光刻蚀 ODNP 探头,提供相位相干射频(RF)激励、低噪声放大和 NMR 信号采集、MW 频率合成、MW 信号调制和 MW 功率放大。使用不同浓度的 TEMPOL 溶液进行的实验验证证明了所介绍的 ODNP 平台的功能和良好性能。使用 500 nL 10 mM 未脱气的 TEMPOL 水溶液进行连续波抽运时,最大增强率达到 -92,这是迄今为止在基于芯片的 ODNP 平台上实现的最大增强率。我们还初步比较了使用不同电子弛豫时间(表观 T1e∗ 和 T2e)的 TEMPOL 溶液进行连续波抽运和脉冲抽运的效果。我们的研究表明,对于功率受限的微型 ODNP 平台,当溶液具有足够长的电子自旋晶格弛豫时间时,脉冲泵浦在给定平均功率下的功率效率可以超过 CW 泵浦。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A miniaturized dual-mode continuous-wave and pulsed pumping ODNP platform

A miniaturized dual-mode continuous-wave and pulsed pumping ODNP platform
In this paper, we present the design and experimental validation of a miniaturized Overhauser dynamic nuclear polarization (ODNP) platform for both continuous-wave (CW) and pulsed DNP enhancement experiments at a B0 field strength of 0.25 T. The platform is centered around chip-integrated nuclear magnetic resonance (NMR) and microwave (MW) electronics and further incorporates a custom-designed laser-engraved ODNP probe, providing phase-coherent radio frequency (RF) excitation, low-noise amplification and acquisition of NMR signals, MW frequency synthesis, MW signal modulation, and MW power amplification. An experimental validation using TEMPOL solutions with different concentrations demonstrates the functionality and good performance of the presented ODNP platform. A maximum enhancement of 92 with CW pumping was achieved using a 500 nL 10 mM non-degassed TEMPOL solution in water, representing the largest enhancement achieved to date in a chip-based ODNP platform. We also include a preliminary comparison between CW pumping and pulsed pumping using TEMPOL solutions with different electron relaxation times (apparent T1e and T2e). Our study indicates that, for a power-limited miniaturized ODNP platform, pulsed pumping can surpass CW pumping in power efficiency for a given average power when the solution possesses a sufficiently long electron spin-lattice relaxation time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信