采用集合机器学习的线性模型中的特征重要性:法玛和弗伦奇五因子模型研究

IF 6.9 2区 经济学 Q1 BUSINESS, FINANCE
Tae Yeon Kwon
{"title":"采用集合机器学习的线性模型中的特征重要性:法玛和弗伦奇五因子模型研究","authors":"Tae Yeon Kwon","doi":"10.1016/j.frl.2024.106406","DOIUrl":null,"url":null,"abstract":"<div><div>This study explores key considerations for interpreting feature influence and importance in Machine Learning (ML) for financial models that commonly assume linearity. Simulations demonstrate that ML techniques, including Random Forest, XGBoost, and CatBoost, may produce misleading feature importance ranks when the underlying model is linear. We empirically examine the Fama–French five-factor model using U.S. monthly data from July 1964 to June 2024. While the most important factors are consistently identified, the ranks of moderately important factors vary depending on the estimation method. These results highlight the need for a critical application of ML in financial modeling when the purpose is interpretability.</div></div>","PeriodicalId":12167,"journal":{"name":"Finance Research Letters","volume":"71 ","pages":"Article 106406"},"PeriodicalIF":6.9000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Feature importance in linear models with ensemble machine learning: A study of the Fama and French five-factor model\",\"authors\":\"Tae Yeon Kwon\",\"doi\":\"10.1016/j.frl.2024.106406\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study explores key considerations for interpreting feature influence and importance in Machine Learning (ML) for financial models that commonly assume linearity. Simulations demonstrate that ML techniques, including Random Forest, XGBoost, and CatBoost, may produce misleading feature importance ranks when the underlying model is linear. We empirically examine the Fama–French five-factor model using U.S. monthly data from July 1964 to June 2024. While the most important factors are consistently identified, the ranks of moderately important factors vary depending on the estimation method. These results highlight the need for a critical application of ML in financial modeling when the purpose is interpretability.</div></div>\",\"PeriodicalId\":12167,\"journal\":{\"name\":\"Finance Research Letters\",\"volume\":\"71 \",\"pages\":\"Article 106406\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Finance Research Letters\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1544612324014351\",\"RegionNum\":2,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finance Research Letters","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1544612324014351","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了在机器学习(ML)中解释通常假定为线性的金融模型的特征影响和重要性的关键注意事项。模拟证明,当底层模型是线性的时候,包括随机森林、XGBoost 和 CatBoost 在内的 ML 技术可能会产生误导性的特征重要性排名。我们使用 1964 年 7 月至 2024 年 6 月的美国月度数据对 Fama-French 五因子模型进行了实证检验。虽然最重要的因子被一致识别出来,但中等重要因子的等级却因估计方法的不同而不同。这些结果突出表明,在以可解释性为目的的金融建模中,需要批判性地应用 ML。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Feature importance in linear models with ensemble machine learning: A study of the Fama and French five-factor model
This study explores key considerations for interpreting feature influence and importance in Machine Learning (ML) for financial models that commonly assume linearity. Simulations demonstrate that ML techniques, including Random Forest, XGBoost, and CatBoost, may produce misleading feature importance ranks when the underlying model is linear. We empirically examine the Fama–French five-factor model using U.S. monthly data from July 1964 to June 2024. While the most important factors are consistently identified, the ranks of moderately important factors vary depending on the estimation method. These results highlight the need for a critical application of ML in financial modeling when the purpose is interpretability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Finance Research Letters
Finance Research Letters BUSINESS, FINANCE-
CiteScore
11.10
自引率
14.40%
发文量
863
期刊介绍: Finance Research Letters welcomes submissions across all areas of finance, aiming for rapid publication of significant new findings. The journal particularly encourages papers that provide insight into the replicability of established results, examine the cross-national applicability of previous findings, challenge existing methodologies, or demonstrate methodological contingencies. Papers are invited in the following areas: Actuarial studies Alternative investments Asset Pricing Bankruptcy and liquidation Banks and other Depository Institutions Behavioral and experimental finance Bibliometric and Scientometric studies of finance Capital budgeting and corporate investment Capital markets and accounting Capital structure and payout policy Commodities Contagion, crises and interdependence Corporate governance Credit and fixed income markets and instruments Derivatives Emerging markets Energy Finance and Energy Markets Financial Econometrics Financial History Financial intermediation and money markets Financial markets and marketplaces Financial Mathematics and Econophysics Financial Regulation and Law Forecasting Frontier market studies International Finance Market efficiency, event studies Mergers, acquisitions and the market for corporate control Micro Finance Institutions Microstructure Non-bank Financial Institutions Personal Finance Portfolio choice and investing Real estate finance and investing Risk SME, Family and Entrepreneurial Finance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信