双异质系统的异质共振积分应用研究

IF 1.9 3区 工程技术 Q1 NUCLEAR SCIENCE & TECHNOLOGY
Shuai Qin , Qian Zhang , Kai Wang , Dong Huang , Song Li , Yuechao Liang
{"title":"双异质系统的异质共振积分应用研究","authors":"Shuai Qin ,&nbsp;Qian Zhang ,&nbsp;Kai Wang ,&nbsp;Dong Huang ,&nbsp;Song Li ,&nbsp;Yuechao Liang","doi":"10.1016/j.anucene.2024.111051","DOIUrl":null,"url":null,"abstract":"<div><div>The Double Heterogeneous (DH) system, where fuel particles are randomly dispersed in the non-fissile matrix, is challenging for the reactor physics calculation. The Sanchez-Pomraning method accurately handles the DH system, but integrating it into existing reactor physics code requires code development. This study adopts the Sanchez-Pomraning coupled Ultra-Fine-Group (SP-UFG) slowing-down calculation to generate the heterogeneous Resonance Integral (RI) for DH system treatment with simple volume homogenization. Fully Ceramic Micro-encapsulated (FCM) fuel pin-cells and plates with varying configurations are calculated for verification. Effective cross-sections (XSs) and <em>k</em><sub>eff</sub> calculated by the heterogeneous RI are compared with SP-UFG results. Results show that the maximum bias of XSs and <em>k</em><sub>eff</sub> caused by the XS biases are less than 5% and 200 pcm, respectively. The maximum bias of <em>k</em><sub>eff</sub> when compared with Monte Carlo calculated results is −213 pcm, demonstrating that only considering the DH effect in the resonance energy region is acceptable.</div></div>","PeriodicalId":8006,"journal":{"name":"Annals of Nuclear Energy","volume":"212 ","pages":"Article 111051"},"PeriodicalIF":1.9000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on application of heterogeneous resonance Integral for double heterogeneous system\",\"authors\":\"Shuai Qin ,&nbsp;Qian Zhang ,&nbsp;Kai Wang ,&nbsp;Dong Huang ,&nbsp;Song Li ,&nbsp;Yuechao Liang\",\"doi\":\"10.1016/j.anucene.2024.111051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The Double Heterogeneous (DH) system, where fuel particles are randomly dispersed in the non-fissile matrix, is challenging for the reactor physics calculation. The Sanchez-Pomraning method accurately handles the DH system, but integrating it into existing reactor physics code requires code development. This study adopts the Sanchez-Pomraning coupled Ultra-Fine-Group (SP-UFG) slowing-down calculation to generate the heterogeneous Resonance Integral (RI) for DH system treatment with simple volume homogenization. Fully Ceramic Micro-encapsulated (FCM) fuel pin-cells and plates with varying configurations are calculated for verification. Effective cross-sections (XSs) and <em>k</em><sub>eff</sub> calculated by the heterogeneous RI are compared with SP-UFG results. Results show that the maximum bias of XSs and <em>k</em><sub>eff</sub> caused by the XS biases are less than 5% and 200 pcm, respectively. The maximum bias of <em>k</em><sub>eff</sub> when compared with Monte Carlo calculated results is −213 pcm, demonstrating that only considering the DH effect in the resonance energy region is acceptable.</div></div>\",\"PeriodicalId\":8006,\"journal\":{\"name\":\"Annals of Nuclear Energy\",\"volume\":\"212 \",\"pages\":\"Article 111051\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Nuclear Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S030645492400714X\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Nuclear Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S030645492400714X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

双异质(DH)系统,即燃料颗粒随机分散在非易裂变基质中,对反应堆物理计算具有挑战性。Sanchez-Pomraning 方法能准确处理 DH 系统,但将其集成到现有反应堆物理代码中需要代码开发。本研究采用桑切斯-波姆兰宁耦合超细群(SP-UFG)减速计算,生成异质共振积分(RI),用于 DH 系统的简单体积均质化处理。对不同配置的全陶瓷微胶囊(FCM)燃料针形电池和板进行了计算验证。将异质 RI 计算出的有效截面 (XS) 和 keff 与 SP-UFG 结果进行了比较。结果表明,XSs 和 keff 的最大偏差分别小于 5%和 200 pcm。与蒙特卡洛计算结果相比,keff 的最大偏差为 -213 pcm,这表明只考虑共振能量区域的 DH 效应是可以接受的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research on application of heterogeneous resonance Integral for double heterogeneous system
The Double Heterogeneous (DH) system, where fuel particles are randomly dispersed in the non-fissile matrix, is challenging for the reactor physics calculation. The Sanchez-Pomraning method accurately handles the DH system, but integrating it into existing reactor physics code requires code development. This study adopts the Sanchez-Pomraning coupled Ultra-Fine-Group (SP-UFG) slowing-down calculation to generate the heterogeneous Resonance Integral (RI) for DH system treatment with simple volume homogenization. Fully Ceramic Micro-encapsulated (FCM) fuel pin-cells and plates with varying configurations are calculated for verification. Effective cross-sections (XSs) and keff calculated by the heterogeneous RI are compared with SP-UFG results. Results show that the maximum bias of XSs and keff caused by the XS biases are less than 5% and 200 pcm, respectively. The maximum bias of keff when compared with Monte Carlo calculated results is −213 pcm, demonstrating that only considering the DH effect in the resonance energy region is acceptable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Nuclear Energy
Annals of Nuclear Energy 工程技术-核科学技术
CiteScore
4.30
自引率
21.10%
发文量
632
审稿时长
7.3 months
期刊介绍: Annals of Nuclear Energy provides an international medium for the communication of original research, ideas and developments in all areas of the field of nuclear energy science and technology. Its scope embraces nuclear fuel reserves, fuel cycles and cost, materials, processing, system and component technology (fission only), design and optimization, direct conversion of nuclear energy sources, environmental control, reactor physics, heat transfer and fluid dynamics, structural analysis, fuel management, future developments, nuclear fuel and safety, nuclear aerosol, neutron physics, computer technology (both software and hardware), risk assessment, radioactive waste disposal and reactor thermal hydraulics. Papers submitted to Annals need to demonstrate a clear link to nuclear power generation/nuclear engineering. Papers which deal with pure nuclear physics, pure health physics, imaging, or attenuation and shielding properties of concretes and various geological materials are not within the scope of the journal. Also, papers that deal with policy or economics are not within the scope of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信