受约束多目标优化的深度强化学习引导的协同进化算法

IF 8.1 1区 计算机科学 0 COMPUTER SCIENCE, INFORMATION SYSTEMS
Wenguan Luo , Xiaobing Yu , Gary G. Yen , Yifan Wei
{"title":"受约束多目标优化的深度强化学习引导的协同进化算法","authors":"Wenguan Luo ,&nbsp;Xiaobing Yu ,&nbsp;Gary G. Yen ,&nbsp;Yifan Wei","doi":"10.1016/j.ins.2024.121648","DOIUrl":null,"url":null,"abstract":"<div><div>Effectively managing convergence, diversity, and feasibility constitutes a fundamental trinity of tasks in optimizing constrained multiobjective optimization problems (CMOPs). Nevertheless, contemporary constrained multiobjective evolutionary algorithms (CMOEAs) frequently encounter challenges in reconciling these imperatives simultaneously. Drawing inspiration from overwhelming success in artificial intelligence, we propose a deep reinforcement learning-guided coevolutionary algorithm (DRLCEA) to tackle this predicament. DRLCEA employs two populations to optimize the original and unconstrained versions of the CMOP, respectively and then fosters cooperation between them according to the guidance of DRL. The established DRL employs two evaluation metrics to appraise population convergence, diversity, and feasibility, thus remarkably proficient in reflecting and steering the coevolution. Therefore, the proposed DRLCEA could effectively locate the feasible regions and approximate the constrained Pareto front. We assess the proposed algorithm on 32 benchmark CMOPs and one real-world UAV emergency track planning (UETP) application. Experimental results undoubtedly demonstrate the superiority and robustness of the proposed DRLCEA.</div></div>","PeriodicalId":51063,"journal":{"name":"Information Sciences","volume":"692 ","pages":"Article 121648"},"PeriodicalIF":8.1000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep reinforcement learning-guided coevolutionary algorithm for constrained multiobjective optimization\",\"authors\":\"Wenguan Luo ,&nbsp;Xiaobing Yu ,&nbsp;Gary G. Yen ,&nbsp;Yifan Wei\",\"doi\":\"10.1016/j.ins.2024.121648\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Effectively managing convergence, diversity, and feasibility constitutes a fundamental trinity of tasks in optimizing constrained multiobjective optimization problems (CMOPs). Nevertheless, contemporary constrained multiobjective evolutionary algorithms (CMOEAs) frequently encounter challenges in reconciling these imperatives simultaneously. Drawing inspiration from overwhelming success in artificial intelligence, we propose a deep reinforcement learning-guided coevolutionary algorithm (DRLCEA) to tackle this predicament. DRLCEA employs two populations to optimize the original and unconstrained versions of the CMOP, respectively and then fosters cooperation between them according to the guidance of DRL. The established DRL employs two evaluation metrics to appraise population convergence, diversity, and feasibility, thus remarkably proficient in reflecting and steering the coevolution. Therefore, the proposed DRLCEA could effectively locate the feasible regions and approximate the constrained Pareto front. We assess the proposed algorithm on 32 benchmark CMOPs and one real-world UAV emergency track planning (UETP) application. Experimental results undoubtedly demonstrate the superiority and robustness of the proposed DRLCEA.</div></div>\",\"PeriodicalId\":51063,\"journal\":{\"name\":\"Information Sciences\",\"volume\":\"692 \",\"pages\":\"Article 121648\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Sciences\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0020025524015627\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020025524015627","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

有效管理收敛性、多样性和可行性是优化受限多目标优化问题(CMOPs)的三位一体的基本任务。然而,当代的约束多目标进化算法(CMOEAs)在同时协调这些必要条件时经常遇到挑战。从人工智能领域的巨大成功中汲取灵感,我们提出了一种深度强化学习引导的协同进化算法(DRLCEA)来解决这一难题。DRLCEA 采用两个种群分别优化 CMOP 的原始版本和无约束版本,然后根据 DRL 的指导促进它们之间的合作。已建立的 DRL 采用了两个评价指标来评估种群的收敛性、多样性和可行性,因此能够很好地反映和引导协同进化。因此,所提出的 DRLCEA 可以有效地定位可行区域并逼近受约束的帕累托前沿。我们在 32 个基准 CMOP 和一个真实世界的无人机紧急轨迹规划(UETP)应用中评估了所提出的算法。实验结果无疑证明了所提出的 DRLCEA 的优越性和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep reinforcement learning-guided coevolutionary algorithm for constrained multiobjective optimization
Effectively managing convergence, diversity, and feasibility constitutes a fundamental trinity of tasks in optimizing constrained multiobjective optimization problems (CMOPs). Nevertheless, contemporary constrained multiobjective evolutionary algorithms (CMOEAs) frequently encounter challenges in reconciling these imperatives simultaneously. Drawing inspiration from overwhelming success in artificial intelligence, we propose a deep reinforcement learning-guided coevolutionary algorithm (DRLCEA) to tackle this predicament. DRLCEA employs two populations to optimize the original and unconstrained versions of the CMOP, respectively and then fosters cooperation between them according to the guidance of DRL. The established DRL employs two evaluation metrics to appraise population convergence, diversity, and feasibility, thus remarkably proficient in reflecting and steering the coevolution. Therefore, the proposed DRLCEA could effectively locate the feasible regions and approximate the constrained Pareto front. We assess the proposed algorithm on 32 benchmark CMOPs and one real-world UAV emergency track planning (UETP) application. Experimental results undoubtedly demonstrate the superiority and robustness of the proposed DRLCEA.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Information Sciences
Information Sciences 工程技术-计算机:信息系统
CiteScore
14.00
自引率
17.30%
发文量
1322
审稿时长
10.4 months
期刊介绍: Informatics and Computer Science Intelligent Systems Applications is an esteemed international journal that focuses on publishing original and creative research findings in the field of information sciences. We also feature a limited number of timely tutorial and surveying contributions. Our journal aims to cater to a diverse audience, including researchers, developers, managers, strategic planners, graduate students, and anyone interested in staying up-to-date with cutting-edge research in information science, knowledge engineering, and intelligent systems. While readers are expected to share a common interest in information science, they come from varying backgrounds such as engineering, mathematics, statistics, physics, computer science, cell biology, molecular biology, management science, cognitive science, neurobiology, behavioral sciences, and biochemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信