Gayeon Park , Hyeongjun Yang , Kyuhwan Yeom , Myeongheon Jeon , Yunjeong Ko , Byungkook Oh , Kyong-Ho Lee
{"title":"具有行为模式识别功能的知识约束兴趣感知多行为推荐","authors":"Gayeon Park , Hyeongjun Yang , Kyuhwan Yeom , Myeongheon Jeon , Yunjeong Ko , Byungkook Oh , Kyong-Ho Lee","doi":"10.1016/j.ins.2024.121652","DOIUrl":null,"url":null,"abstract":"<div><div>Recommender systems aim to accurately capture user preferences based on interacted items. Conventional recommender systems mainly rely on the singular-type behavior of users, which may limit their ability to handle practical scenarios (e.g., E-commerce). In contrast, multi-type behavior recommendation (MBR) exploits auxiliary types of behaviors (e.g., view, cart), as well as the target behavior (e.g., buy), and has proven to be an effective way to identify user preferences from various perspectives. Existing MBR methods assume that all auxiliary behaviors of a user have a positive relevance with the target behavior. However, users may not interact with items using all available behaviors, but the degree of relatedness is not explicitly taken into account. To address the issue, we propose a <strong>K</strong>nowledge-constrained <strong>I</strong>nterest-aware Framework with Behavior <strong>P</strong>attern <strong>I</strong>dentification (KIPI). The proposed model identifies user-specific behavior patterns by introducing pair-wise dependency modeling to explicitly reflect the fine-grained relatedness between behavior pairs. Additionally, we enhance item representations by leveraging both instance-view knowledge graph (KG) and ontology-view KG, which provides broader concept information of items. Moreover, we design a concept-constrained Bayesian Personalized Ranking loss to reflect a user's general interest. Extensive studies on the real-world datasets demonstrate that our model outperforms state-of-the-art baselines.</div></div>","PeriodicalId":51063,"journal":{"name":"Information Sciences","volume":"692 ","pages":"Article 121652"},"PeriodicalIF":8.1000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Knowledge-constrained interest-aware multi-behavior recommendation with behavior pattern identification\",\"authors\":\"Gayeon Park , Hyeongjun Yang , Kyuhwan Yeom , Myeongheon Jeon , Yunjeong Ko , Byungkook Oh , Kyong-Ho Lee\",\"doi\":\"10.1016/j.ins.2024.121652\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Recommender systems aim to accurately capture user preferences based on interacted items. Conventional recommender systems mainly rely on the singular-type behavior of users, which may limit their ability to handle practical scenarios (e.g., E-commerce). In contrast, multi-type behavior recommendation (MBR) exploits auxiliary types of behaviors (e.g., view, cart), as well as the target behavior (e.g., buy), and has proven to be an effective way to identify user preferences from various perspectives. Existing MBR methods assume that all auxiliary behaviors of a user have a positive relevance with the target behavior. However, users may not interact with items using all available behaviors, but the degree of relatedness is not explicitly taken into account. To address the issue, we propose a <strong>K</strong>nowledge-constrained <strong>I</strong>nterest-aware Framework with Behavior <strong>P</strong>attern <strong>I</strong>dentification (KIPI). The proposed model identifies user-specific behavior patterns by introducing pair-wise dependency modeling to explicitly reflect the fine-grained relatedness between behavior pairs. Additionally, we enhance item representations by leveraging both instance-view knowledge graph (KG) and ontology-view KG, which provides broader concept information of items. Moreover, we design a concept-constrained Bayesian Personalized Ranking loss to reflect a user's general interest. Extensive studies on the real-world datasets demonstrate that our model outperforms state-of-the-art baselines.</div></div>\",\"PeriodicalId\":51063,\"journal\":{\"name\":\"Information Sciences\",\"volume\":\"692 \",\"pages\":\"Article 121652\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Sciences\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0020025524015664\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020025524015664","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Knowledge-constrained interest-aware multi-behavior recommendation with behavior pattern identification
Recommender systems aim to accurately capture user preferences based on interacted items. Conventional recommender systems mainly rely on the singular-type behavior of users, which may limit their ability to handle practical scenarios (e.g., E-commerce). In contrast, multi-type behavior recommendation (MBR) exploits auxiliary types of behaviors (e.g., view, cart), as well as the target behavior (e.g., buy), and has proven to be an effective way to identify user preferences from various perspectives. Existing MBR methods assume that all auxiliary behaviors of a user have a positive relevance with the target behavior. However, users may not interact with items using all available behaviors, but the degree of relatedness is not explicitly taken into account. To address the issue, we propose a Knowledge-constrained Interest-aware Framework with Behavior Pattern Identification (KIPI). The proposed model identifies user-specific behavior patterns by introducing pair-wise dependency modeling to explicitly reflect the fine-grained relatedness between behavior pairs. Additionally, we enhance item representations by leveraging both instance-view knowledge graph (KG) and ontology-view KG, which provides broader concept information of items. Moreover, we design a concept-constrained Bayesian Personalized Ranking loss to reflect a user's general interest. Extensive studies on the real-world datasets demonstrate that our model outperforms state-of-the-art baselines.
期刊介绍:
Informatics and Computer Science Intelligent Systems Applications is an esteemed international journal that focuses on publishing original and creative research findings in the field of information sciences. We also feature a limited number of timely tutorial and surveying contributions.
Our journal aims to cater to a diverse audience, including researchers, developers, managers, strategic planners, graduate students, and anyone interested in staying up-to-date with cutting-edge research in information science, knowledge engineering, and intelligent systems. While readers are expected to share a common interest in information science, they come from varying backgrounds such as engineering, mathematics, statistics, physics, computer science, cell biology, molecular biology, management science, cognitive science, neurobiology, behavioral sciences, and biochemistry.