Jakob Jelenčič , M. Besher Massri , Ljupčo Todorovski , Marko Grobelnik , Dunja Mladenić
{"title":"通过智能去噪和潜在表示优化改进随机模型","authors":"Jakob Jelenčič , M. Besher Massri , Ljupčo Todorovski , Marko Grobelnik , Dunja Mladenić","doi":"10.1016/j.ins.2024.121672","DOIUrl":null,"url":null,"abstract":"<div><div>This paper introduces an innovative deep learning-based optimization method specifically designed for data derived from stochastic processes. Addressing the prevalent issue of rapid overfitting in real-world scenarios with limited historical data, our approach focuses on denoising optimization. The method effectively balances the simultaneous optimization of latent data representation and target variables, leading to enhanced model performance. We rigorously test our approach using five diverse real-world datasets. Our study is structured into three parts: an ablation study to validate the individual components of our method, a statistical analysis using the Wilcoxon rank-sum test to confirm the superiority of our method against five research hypotheses, and a detailed exploration of parameter visualization and fine-tuning. The comprehensive evaluation demonstrates that our method not only outperforms existing techniques but also significantly contributes to the advancement of deep learning models for stochastic processes. The findings underscore the potential of our method as a robust solution to the challenges in modeling stochastic processes with deep learning, offering new avenues for efficient and accurate predictions.</div></div>","PeriodicalId":51063,"journal":{"name":"Information Sciences","volume":"692 ","pages":"Article 121672"},"PeriodicalIF":8.1000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving stochastic models by smart denoising and latent representation optimization\",\"authors\":\"Jakob Jelenčič , M. Besher Massri , Ljupčo Todorovski , Marko Grobelnik , Dunja Mladenić\",\"doi\":\"10.1016/j.ins.2024.121672\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper introduces an innovative deep learning-based optimization method specifically designed for data derived from stochastic processes. Addressing the prevalent issue of rapid overfitting in real-world scenarios with limited historical data, our approach focuses on denoising optimization. The method effectively balances the simultaneous optimization of latent data representation and target variables, leading to enhanced model performance. We rigorously test our approach using five diverse real-world datasets. Our study is structured into three parts: an ablation study to validate the individual components of our method, a statistical analysis using the Wilcoxon rank-sum test to confirm the superiority of our method against five research hypotheses, and a detailed exploration of parameter visualization and fine-tuning. The comprehensive evaluation demonstrates that our method not only outperforms existing techniques but also significantly contributes to the advancement of deep learning models for stochastic processes. The findings underscore the potential of our method as a robust solution to the challenges in modeling stochastic processes with deep learning, offering new avenues for efficient and accurate predictions.</div></div>\",\"PeriodicalId\":51063,\"journal\":{\"name\":\"Information Sciences\",\"volume\":\"692 \",\"pages\":\"Article 121672\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Sciences\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002002552401586X\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002002552401586X","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Improving stochastic models by smart denoising and latent representation optimization
This paper introduces an innovative deep learning-based optimization method specifically designed for data derived from stochastic processes. Addressing the prevalent issue of rapid overfitting in real-world scenarios with limited historical data, our approach focuses on denoising optimization. The method effectively balances the simultaneous optimization of latent data representation and target variables, leading to enhanced model performance. We rigorously test our approach using five diverse real-world datasets. Our study is structured into three parts: an ablation study to validate the individual components of our method, a statistical analysis using the Wilcoxon rank-sum test to confirm the superiority of our method against five research hypotheses, and a detailed exploration of parameter visualization and fine-tuning. The comprehensive evaluation demonstrates that our method not only outperforms existing techniques but also significantly contributes to the advancement of deep learning models for stochastic processes. The findings underscore the potential of our method as a robust solution to the challenges in modeling stochastic processes with deep learning, offering new avenues for efficient and accurate predictions.
期刊介绍:
Informatics and Computer Science Intelligent Systems Applications is an esteemed international journal that focuses on publishing original and creative research findings in the field of information sciences. We also feature a limited number of timely tutorial and surveying contributions.
Our journal aims to cater to a diverse audience, including researchers, developers, managers, strategic planners, graduate students, and anyone interested in staying up-to-date with cutting-edge research in information science, knowledge engineering, and intelligent systems. While readers are expected to share a common interest in information science, they come from varying backgrounds such as engineering, mathematics, statistics, physics, computer science, cell biology, molecular biology, management science, cognitive science, neurobiology, behavioral sciences, and biochemistry.