{"title":"实现有弹性和高能效的可扩展克雷洛夫求解器","authors":"Zheng Miao , Jon C. Calhoun , Rong Ge","doi":"10.1016/j.parco.2024.103122","DOIUrl":null,"url":null,"abstract":"<div><div>Exascale computing must simultaneously address both energy efficiency and resilience as power limits impact scalability and faults are more common. Unfortunately, energy efficiency and resilience have been traditionally studied in isolation and optimizing one typically detrimentally impacts the other. To deliver the promised performance within the given power budget, exascale computing mandates a deep understanding of the interplay among energy efficiency, resilience, and scalability. In this work, we propose novel methods to analyze and optimize the costs of common resilience techniques including checkpoint-restart and forward recovery. We focus on sparse linear solvers as they are the fundamental kernels in many scientific applications. In particular, we present generalized analytical and experimental methods to analyze and quantify the time and energy costs of various recovery schemes on computer clusters, and develop and prototype performance optimization and power management strategies to improve energy efficiency. Moreover, we take a deep dive into the forward recovery that recently started to draw attention from researchers, and propose a practical matrix-aware optimization technique to reduce its recovery time. This work shows that while the time and energy costs of various resilience techniques are different, they share the common components and can be quantitatively evaluated with a generalized framework. This analysis framework can be used to guide the design of performance and energy optimization technologies. While each resilience technique has its advantages depending on the fault rate, system size, and power budget, the forward recovery can further benefit from matrix-aware optimizations for large-scale computing.</div></div>","PeriodicalId":54642,"journal":{"name":"Parallel Computing","volume":"123 ","pages":"Article 103122"},"PeriodicalIF":2.0000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards resilient and energy efficient scalable Krylov solvers\",\"authors\":\"Zheng Miao , Jon C. Calhoun , Rong Ge\",\"doi\":\"10.1016/j.parco.2024.103122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Exascale computing must simultaneously address both energy efficiency and resilience as power limits impact scalability and faults are more common. Unfortunately, energy efficiency and resilience have been traditionally studied in isolation and optimizing one typically detrimentally impacts the other. To deliver the promised performance within the given power budget, exascale computing mandates a deep understanding of the interplay among energy efficiency, resilience, and scalability. In this work, we propose novel methods to analyze and optimize the costs of common resilience techniques including checkpoint-restart and forward recovery. We focus on sparse linear solvers as they are the fundamental kernels in many scientific applications. In particular, we present generalized analytical and experimental methods to analyze and quantify the time and energy costs of various recovery schemes on computer clusters, and develop and prototype performance optimization and power management strategies to improve energy efficiency. Moreover, we take a deep dive into the forward recovery that recently started to draw attention from researchers, and propose a practical matrix-aware optimization technique to reduce its recovery time. This work shows that while the time and energy costs of various resilience techniques are different, they share the common components and can be quantitatively evaluated with a generalized framework. This analysis framework can be used to guide the design of performance and energy optimization technologies. While each resilience technique has its advantages depending on the fault rate, system size, and power budget, the forward recovery can further benefit from matrix-aware optimizations for large-scale computing.</div></div>\",\"PeriodicalId\":54642,\"journal\":{\"name\":\"Parallel Computing\",\"volume\":\"123 \",\"pages\":\"Article 103122\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Parallel Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167819124000607\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Parallel Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167819124000607","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Towards resilient and energy efficient scalable Krylov solvers
Exascale computing must simultaneously address both energy efficiency and resilience as power limits impact scalability and faults are more common. Unfortunately, energy efficiency and resilience have been traditionally studied in isolation and optimizing one typically detrimentally impacts the other. To deliver the promised performance within the given power budget, exascale computing mandates a deep understanding of the interplay among energy efficiency, resilience, and scalability. In this work, we propose novel methods to analyze and optimize the costs of common resilience techniques including checkpoint-restart and forward recovery. We focus on sparse linear solvers as they are the fundamental kernels in many scientific applications. In particular, we present generalized analytical and experimental methods to analyze and quantify the time and energy costs of various recovery schemes on computer clusters, and develop and prototype performance optimization and power management strategies to improve energy efficiency. Moreover, we take a deep dive into the forward recovery that recently started to draw attention from researchers, and propose a practical matrix-aware optimization technique to reduce its recovery time. This work shows that while the time and energy costs of various resilience techniques are different, they share the common components and can be quantitatively evaluated with a generalized framework. This analysis framework can be used to guide the design of performance and energy optimization technologies. While each resilience technique has its advantages depending on the fault rate, system size, and power budget, the forward recovery can further benefit from matrix-aware optimizations for large-scale computing.
期刊介绍:
Parallel Computing is an international journal presenting the practical use of parallel computer systems, including high performance architecture, system software, programming systems and tools, and applications. Within this context the journal covers all aspects of high-end parallel computing from single homogeneous or heterogenous computing nodes to large-scale multi-node systems.
Parallel Computing features original research work and review articles as well as novel or illustrative accounts of application experience with (and techniques for) the use of parallel computers. We also welcome studies reproducing prior publications that either confirm or disprove prior published results.
Particular technical areas of interest include, but are not limited to:
-System software for parallel computer systems including programming languages (new languages as well as compilation techniques), operating systems (including middleware), and resource management (scheduling and load-balancing).
-Enabling software including debuggers, performance tools, and system and numeric libraries.
-General hardware (architecture) concepts, new technologies enabling the realization of such new concepts, and details of commercially available systems
-Software engineering and productivity as it relates to parallel computing
-Applications (including scientific computing, deep learning, machine learning) or tool case studies demonstrating novel ways to achieve parallelism
-Performance measurement results on state-of-the-art systems
-Approaches to effectively utilize large-scale parallel computing including new algorithms or algorithm analysis with demonstrated relevance to real applications using existing or next generation parallel computer architectures.
-Parallel I/O systems both hardware and software
-Networking technology for support of high-speed computing demonstrating the impact of high-speed computation on parallel applications