马尔可夫跃迁奇异扰动复杂网络的基于事件的被动滤波

IF 3.7 3区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS
Tingting Ru , Chengyu Yang
{"title":"马尔可夫跃迁奇异扰动复杂网络的基于事件的被动滤波","authors":"Tingting Ru ,&nbsp;Chengyu Yang","doi":"10.1016/j.jfranklin.2024.107403","DOIUrl":null,"url":null,"abstract":"<div><div>This paper studies the event-based passive filtering issue for a series of time-delayed complex networks in the discrete-time domain. These networks feature singularly perturbed and Markov jump parameters, where the Markov chain models abrupt changes in node couplings and structural parameters, while the singularly perturbed parameter addresses discrepancies in time scales. Considering the limited communication bandwidth resource, a dynamic event-triggered mechanism is applied. This paper aims to design a reliable filter to estimate the states of complex networks, ensuring the filtering error system’s stochastic stability and achieving an expected passive performance. Using convex optimization techniques and Lyapunov methodology, we derive sufficient criteria to ensure the stability of the filtering error system and the existence of such a filter. To validate the feasibility of the proposed method, both numerical and a practical examples are presented in the simulation part.</div></div>","PeriodicalId":17283,"journal":{"name":"Journal of The Franklin Institute-engineering and Applied Mathematics","volume":"362 1","pages":"Article 107403"},"PeriodicalIF":3.7000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Event-based passive filtering for Markov jump singularly perturbed complex networks\",\"authors\":\"Tingting Ru ,&nbsp;Chengyu Yang\",\"doi\":\"10.1016/j.jfranklin.2024.107403\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper studies the event-based passive filtering issue for a series of time-delayed complex networks in the discrete-time domain. These networks feature singularly perturbed and Markov jump parameters, where the Markov chain models abrupt changes in node couplings and structural parameters, while the singularly perturbed parameter addresses discrepancies in time scales. Considering the limited communication bandwidth resource, a dynamic event-triggered mechanism is applied. This paper aims to design a reliable filter to estimate the states of complex networks, ensuring the filtering error system’s stochastic stability and achieving an expected passive performance. Using convex optimization techniques and Lyapunov methodology, we derive sufficient criteria to ensure the stability of the filtering error system and the existence of such a filter. To validate the feasibility of the proposed method, both numerical and a practical examples are presented in the simulation part.</div></div>\",\"PeriodicalId\":17283,\"journal\":{\"name\":\"Journal of The Franklin Institute-engineering and Applied Mathematics\",\"volume\":\"362 1\",\"pages\":\"Article 107403\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Franklin Institute-engineering and Applied Mathematics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S001600322400824X\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Franklin Institute-engineering and Applied Mathematics","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S001600322400824X","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了离散时域中一系列时延复杂网络的基于事件的被动滤波问题。这些网络具有奇异扰动参数和马尔可夫跃迁参数,其中马尔可夫链模拟节点耦合和结构参数的突然变化,而奇异扰动参数则解决时间尺度上的差异。考虑到通信带宽资源有限,本文采用了动态事件触发机制。本文旨在设计一种可靠的滤波器来估计复杂网络的状态,确保滤波误差系统的随机稳定性,并达到预期的被动性能。利用凸优化技术和 Lyapunov 方法,我们推导出了确保滤波误差系统稳定性的充分标准,以及这种滤波器的存在性。为了验证所提方法的可行性,我们在仿真部分给出了数值和实际例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Event-based passive filtering for Markov jump singularly perturbed complex networks
This paper studies the event-based passive filtering issue for a series of time-delayed complex networks in the discrete-time domain. These networks feature singularly perturbed and Markov jump parameters, where the Markov chain models abrupt changes in node couplings and structural parameters, while the singularly perturbed parameter addresses discrepancies in time scales. Considering the limited communication bandwidth resource, a dynamic event-triggered mechanism is applied. This paper aims to design a reliable filter to estimate the states of complex networks, ensuring the filtering error system’s stochastic stability and achieving an expected passive performance. Using convex optimization techniques and Lyapunov methodology, we derive sufficient criteria to ensure the stability of the filtering error system and the existence of such a filter. To validate the feasibility of the proposed method, both numerical and a practical examples are presented in the simulation part.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.30
自引率
14.60%
发文量
586
审稿时长
6.9 months
期刊介绍: The Journal of The Franklin Institute has an established reputation for publishing high-quality papers in the field of engineering and applied mathematics. Its current focus is on control systems, complex networks and dynamic systems, signal processing and communications and their applications. All submitted papers are peer-reviewed. The Journal will publish original research papers and research review papers of substance. Papers and special focus issues are judged upon possible lasting value, which has been and continues to be the strength of the Journal of The Franklin Institute.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信