基于多时相平面镜和大地遥感卫星 8 号卫星图像的与 2018 年帕卢地震相关的帕卢-科罗断层行为监测

IF 3.8 Q2 ENVIRONMENTAL SCIENCES
Bondan Galih Dewanto , Calvin Wijaya , Ramadhan Priadi
{"title":"基于多时相平面镜和大地遥感卫星 8 号卫星图像的与 2018 年帕卢地震相关的帕卢-科罗断层行为监测","authors":"Bondan Galih Dewanto ,&nbsp;Calvin Wijaya ,&nbsp;Ramadhan Priadi","doi":"10.1016/j.rsase.2024.101397","DOIUrl":null,"url":null,"abstract":"<div><div>The Palu-Koro Fault on Sulawesi Island possesses an extensive record of earthquake-related activity, notably the Palu earthquake on September 28, 2018, which was particularly destructive. This study investigates the evolution of this fault by using high-resolution PlanetScope and Landsat 8 Operational Land Imager/Therma Infrared Sensor (OLI/TIRS) images. By investigating the interseismic, coseismic, and postseismic stages of the earthquake's habits, this paper aims to obtain an in-depth understanding of its behavior. The coseismic displacement analysis, which was carried out alongside the optical image correlation technique, indicated major displacements throughout the Palu-Koro Fault, with the largest displacement of roughly 7 m. To ensure the accuracy of the results, internal verification standards, such as a reliability criterion of &gt;30% and a mean structural similarity index (MSSIM) of 1, were used. Landsat 8 imagery was processed using the land surface temperature method to enhance the understanding of the earthquake phases. Prior to the earthquake, the results suggested a rise in temperature, which peaked during the coseismic phase and decreased progressively during the postseismic phase. Intriguingly, the temperature behavior revealed the possibility of using information from remote sensing as an alternative approach to identify the fault distribution in Palu City. Overall, this study demonstrates the utility of remote sensing data for analyzing the dynamics of the Palu-Koro Fault and understanding each stage of the 2018 Palu earthquake. By integrating high-resolution satellite imagery with sophisticated image processing techniques, this paper provides crucial insights into earthquake activity and its impact in this area.</div></div>","PeriodicalId":53227,"journal":{"name":"Remote Sensing Applications-Society and Environment","volume":"37 ","pages":"Article 101397"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Palu-Koro fault behaviour monitoring associated with the 2018 Palu earthquake based on the multi-temporal planetscope and Landsat 8 satellite images\",\"authors\":\"Bondan Galih Dewanto ,&nbsp;Calvin Wijaya ,&nbsp;Ramadhan Priadi\",\"doi\":\"10.1016/j.rsase.2024.101397\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The Palu-Koro Fault on Sulawesi Island possesses an extensive record of earthquake-related activity, notably the Palu earthquake on September 28, 2018, which was particularly destructive. This study investigates the evolution of this fault by using high-resolution PlanetScope and Landsat 8 Operational Land Imager/Therma Infrared Sensor (OLI/TIRS) images. By investigating the interseismic, coseismic, and postseismic stages of the earthquake's habits, this paper aims to obtain an in-depth understanding of its behavior. The coseismic displacement analysis, which was carried out alongside the optical image correlation technique, indicated major displacements throughout the Palu-Koro Fault, with the largest displacement of roughly 7 m. To ensure the accuracy of the results, internal verification standards, such as a reliability criterion of &gt;30% and a mean structural similarity index (MSSIM) of 1, were used. Landsat 8 imagery was processed using the land surface temperature method to enhance the understanding of the earthquake phases. Prior to the earthquake, the results suggested a rise in temperature, which peaked during the coseismic phase and decreased progressively during the postseismic phase. Intriguingly, the temperature behavior revealed the possibility of using information from remote sensing as an alternative approach to identify the fault distribution in Palu City. Overall, this study demonstrates the utility of remote sensing data for analyzing the dynamics of the Palu-Koro Fault and understanding each stage of the 2018 Palu earthquake. By integrating high-resolution satellite imagery with sophisticated image processing techniques, this paper provides crucial insights into earthquake activity and its impact in this area.</div></div>\",\"PeriodicalId\":53227,\"journal\":{\"name\":\"Remote Sensing Applications-Society and Environment\",\"volume\":\"37 \",\"pages\":\"Article 101397\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Remote Sensing Applications-Society and Environment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352938524002611\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing Applications-Society and Environment","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352938524002611","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

苏拉威西岛上的帕卢-科罗断层拥有大量与地震相关的活动记录,尤其是2018年9月28日发生的帕卢地震,破坏力尤为严重。本研究利用高分辨率 PlanetScope 和大地遥感卫星 8(Landsat 8 Operational Land Imager/Therma Infrared Sensor,OLI/TIRS)图像对该断层的演变进行了研究。本文旨在通过研究该地震的震间、共震和震后阶段的习性,深入了解其行为。与光学图像相关技术同时进行的共震位移分析表明,整个帕卢-科罗断层都发生了大位移,最大位移约为 7 米。为确保结果的准确性,采用了内部验证标准,如 30% 的可靠性标准和 1 的平均结构相似性指数(MSSIM)。使用地表温度法处理了 Landsat 8 图像,以加深对地震阶段的理解。结果表明,地震前温度上升,在共震阶段达到峰值,在震后阶段逐渐下降。耐人寻味的是,温度行为揭示了利用遥感信息作为替代方法来识别帕卢市断层分布的可能性。总之,本研究证明了遥感数据在分析帕卢-科罗断层动态和了解 2018 年帕卢地震各阶段的实用性。通过将高分辨率卫星图像与复杂的图像处理技术相结合,本文提供了有关该地区地震活动及其影响的重要见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The Palu-Koro fault behaviour monitoring associated with the 2018 Palu earthquake based on the multi-temporal planetscope and Landsat 8 satellite images

The Palu-Koro fault behaviour monitoring associated with the 2018 Palu earthquake based on the multi-temporal planetscope and Landsat 8 satellite images
The Palu-Koro Fault on Sulawesi Island possesses an extensive record of earthquake-related activity, notably the Palu earthquake on September 28, 2018, which was particularly destructive. This study investigates the evolution of this fault by using high-resolution PlanetScope and Landsat 8 Operational Land Imager/Therma Infrared Sensor (OLI/TIRS) images. By investigating the interseismic, coseismic, and postseismic stages of the earthquake's habits, this paper aims to obtain an in-depth understanding of its behavior. The coseismic displacement analysis, which was carried out alongside the optical image correlation technique, indicated major displacements throughout the Palu-Koro Fault, with the largest displacement of roughly 7 m. To ensure the accuracy of the results, internal verification standards, such as a reliability criterion of >30% and a mean structural similarity index (MSSIM) of 1, were used. Landsat 8 imagery was processed using the land surface temperature method to enhance the understanding of the earthquake phases. Prior to the earthquake, the results suggested a rise in temperature, which peaked during the coseismic phase and decreased progressively during the postseismic phase. Intriguingly, the temperature behavior revealed the possibility of using information from remote sensing as an alternative approach to identify the fault distribution in Palu City. Overall, this study demonstrates the utility of remote sensing data for analyzing the dynamics of the Palu-Koro Fault and understanding each stage of the 2018 Palu earthquake. By integrating high-resolution satellite imagery with sophisticated image processing techniques, this paper provides crucial insights into earthquake activity and its impact in this area.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.00
自引率
8.50%
发文量
204
审稿时长
65 days
期刊介绍: The journal ''Remote Sensing Applications: Society and Environment'' (RSASE) focuses on remote sensing studies that address specific topics with an emphasis on environmental and societal issues - regional / local studies with global significance. Subjects are encouraged to have an interdisciplinary approach and include, but are not limited by: " -Global and climate change studies addressing the impact of increasing concentrations of greenhouse gases, CO2 emission, carbon balance and carbon mitigation, energy system on social and environmental systems -Ecological and environmental issues including biodiversity, ecosystem dynamics, land degradation, atmospheric and water pollution, urban footprint, ecosystem management and natural hazards (e.g. earthquakes, typhoons, floods, landslides) -Natural resource studies including land-use in general, biomass estimation, forests, agricultural land, plantation, soils, coral reefs, wetland and water resources -Agriculture, food production systems and food security outcomes -Socio-economic issues including urban systems, urban growth, public health, epidemics, land-use transition and land use conflicts -Oceanography and coastal zone studies, including sea level rise projections, coastlines changes and the ocean-land interface -Regional challenges for remote sensing application techniques, monitoring and analysis, such as cloud screening and atmospheric correction for tropical regions -Interdisciplinary studies combining remote sensing, household survey data, field measurements and models to address environmental, societal and sustainability issues -Quantitative and qualitative analysis that documents the impact of using remote sensing studies in social, political, environmental or economic systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信