Mohammad Marjani , Fariba Mohammadimanesh , Masoud Mahdianpari , Eric W. Gill
{"title":"利用多季节哨点数据改进湿地绘图的新型时空视觉转换器模型","authors":"Mohammad Marjani , Fariba Mohammadimanesh , Masoud Mahdianpari , Eric W. Gill","doi":"10.1016/j.rsase.2024.101401","DOIUrl":null,"url":null,"abstract":"<div><div>Wetlands mapping using remote sensing data is a challenging task due to the spectral similarity of wetlands, the fragmented nature of these landscapes, and seasonal variations in wetlands. To address these limitations, this study proposes a novel spatio-temporal vision transformer (ST-ViT) model for an accurate wetland classification using seasonal data. The ST-ViT model was trained using multi-seasonal Sentinel-1 (S1) and Sentinel-2 (S2) data acquired during the spring, summer, and fall of 2020 in a study area located in Newfoundland and Labrador, Canada. The performance of the ST-ViT model was evaluated against the validation dataset, achieving an overall accuracy (OA) of 0.950 and F1-score (F1) of 0.934, outperforming other deep learning models such as random forest (RF), hybrid spectral network (HybridSN), etc. The model demonstrated strong classification capabilities among most wetland classes, with some challenges in distinguishing between spectrally similar classes like bogs and fens. Moreover, the integration of spatio-temporal features enabled the reduction of feature mixing between wetland classes, particularly during different seasons. The ST-ViT model provides an accurate wetland distribution map in different seasons, supporting critical decision-making processes related to wetland conservation and environmental monitoring.</div></div>","PeriodicalId":53227,"journal":{"name":"Remote Sensing Applications-Society and Environment","volume":"37 ","pages":"Article 101401"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel spatio-temporal vision transformer model for improving wetland mapping using multi-seasonal sentinel data\",\"authors\":\"Mohammad Marjani , Fariba Mohammadimanesh , Masoud Mahdianpari , Eric W. Gill\",\"doi\":\"10.1016/j.rsase.2024.101401\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Wetlands mapping using remote sensing data is a challenging task due to the spectral similarity of wetlands, the fragmented nature of these landscapes, and seasonal variations in wetlands. To address these limitations, this study proposes a novel spatio-temporal vision transformer (ST-ViT) model for an accurate wetland classification using seasonal data. The ST-ViT model was trained using multi-seasonal Sentinel-1 (S1) and Sentinel-2 (S2) data acquired during the spring, summer, and fall of 2020 in a study area located in Newfoundland and Labrador, Canada. The performance of the ST-ViT model was evaluated against the validation dataset, achieving an overall accuracy (OA) of 0.950 and F1-score (F1) of 0.934, outperforming other deep learning models such as random forest (RF), hybrid spectral network (HybridSN), etc. The model demonstrated strong classification capabilities among most wetland classes, with some challenges in distinguishing between spectrally similar classes like bogs and fens. Moreover, the integration of spatio-temporal features enabled the reduction of feature mixing between wetland classes, particularly during different seasons. The ST-ViT model provides an accurate wetland distribution map in different seasons, supporting critical decision-making processes related to wetland conservation and environmental monitoring.</div></div>\",\"PeriodicalId\":53227,\"journal\":{\"name\":\"Remote Sensing Applications-Society and Environment\",\"volume\":\"37 \",\"pages\":\"Article 101401\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Remote Sensing Applications-Society and Environment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352938524002659\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing Applications-Society and Environment","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352938524002659","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
A novel spatio-temporal vision transformer model for improving wetland mapping using multi-seasonal sentinel data
Wetlands mapping using remote sensing data is a challenging task due to the spectral similarity of wetlands, the fragmented nature of these landscapes, and seasonal variations in wetlands. To address these limitations, this study proposes a novel spatio-temporal vision transformer (ST-ViT) model for an accurate wetland classification using seasonal data. The ST-ViT model was trained using multi-seasonal Sentinel-1 (S1) and Sentinel-2 (S2) data acquired during the spring, summer, and fall of 2020 in a study area located in Newfoundland and Labrador, Canada. The performance of the ST-ViT model was evaluated against the validation dataset, achieving an overall accuracy (OA) of 0.950 and F1-score (F1) of 0.934, outperforming other deep learning models such as random forest (RF), hybrid spectral network (HybridSN), etc. The model demonstrated strong classification capabilities among most wetland classes, with some challenges in distinguishing between spectrally similar classes like bogs and fens. Moreover, the integration of spatio-temporal features enabled the reduction of feature mixing between wetland classes, particularly during different seasons. The ST-ViT model provides an accurate wetland distribution map in different seasons, supporting critical decision-making processes related to wetland conservation and environmental monitoring.
期刊介绍:
The journal ''Remote Sensing Applications: Society and Environment'' (RSASE) focuses on remote sensing studies that address specific topics with an emphasis on environmental and societal issues - regional / local studies with global significance. Subjects are encouraged to have an interdisciplinary approach and include, but are not limited by: " -Global and climate change studies addressing the impact of increasing concentrations of greenhouse gases, CO2 emission, carbon balance and carbon mitigation, energy system on social and environmental systems -Ecological and environmental issues including biodiversity, ecosystem dynamics, land degradation, atmospheric and water pollution, urban footprint, ecosystem management and natural hazards (e.g. earthquakes, typhoons, floods, landslides) -Natural resource studies including land-use in general, biomass estimation, forests, agricultural land, plantation, soils, coral reefs, wetland and water resources -Agriculture, food production systems and food security outcomes -Socio-economic issues including urban systems, urban growth, public health, epidemics, land-use transition and land use conflicts -Oceanography and coastal zone studies, including sea level rise projections, coastlines changes and the ocean-land interface -Regional challenges for remote sensing application techniques, monitoring and analysis, such as cloud screening and atmospheric correction for tropical regions -Interdisciplinary studies combining remote sensing, household survey data, field measurements and models to address environmental, societal and sustainability issues -Quantitative and qualitative analysis that documents the impact of using remote sensing studies in social, political, environmental or economic systems