Rajkumar Guria , Manoranjan Mishra , Richarde Marques da Silva , Carlos Antonio Costa dos Santos , Celso Augusto Guimarães Santos
{"title":"用于评估印度奥迪沙农业干旱的多传感器综合干旱严重程度指数(IDSI)","authors":"Rajkumar Guria , Manoranjan Mishra , Richarde Marques da Silva , Carlos Antonio Costa dos Santos , Celso Augusto Guimarães Santos","doi":"10.1016/j.rsase.2024.101399","DOIUrl":null,"url":null,"abstract":"<div><div>Recurrent droughts in India have severely impacted the economy and the quality of life. The agricultural drought from June to October 2023 in Odisha (the Kharif season), India, highlighted the urgent need for precise monitoring and assessment due to its significant effects on crop yield and food security. This study develops and validates the multisensor Integrated Drought Severity Index (IDSI) to accurately assess agricultural drought severity using multiple remote sensing indices, including optical, thermal, and microwave sensors. Ten indices were computed and combined using the Analytic Hierarchy Process (AHP) to assign weights, aiming to establish a new agricultural drought index that can monitor severity, identify critical indices, and assess uncertainties in affected areas. Validation results from ROC-AUC indicate that the IDSI model achieved a precision exceeding 85% using empirical weights. The study area's mapping shows that approximately 8.91% experience extreme drought conditions, with significant impacts in specific districts of Odisha. This comprehensive tool provides critical insights for policymakers and farmers, enhancing global drought preparedness and response strategies through its adaptable methodology.</div></div>","PeriodicalId":53227,"journal":{"name":"Remote Sensing Applications-Society and Environment","volume":"37 ","pages":"Article 101399"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multisensor Integrated Drought Severity Index (IDSI) for assessing agricultural drought in Odisha, India\",\"authors\":\"Rajkumar Guria , Manoranjan Mishra , Richarde Marques da Silva , Carlos Antonio Costa dos Santos , Celso Augusto Guimarães Santos\",\"doi\":\"10.1016/j.rsase.2024.101399\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Recurrent droughts in India have severely impacted the economy and the quality of life. The agricultural drought from June to October 2023 in Odisha (the Kharif season), India, highlighted the urgent need for precise monitoring and assessment due to its significant effects on crop yield and food security. This study develops and validates the multisensor Integrated Drought Severity Index (IDSI) to accurately assess agricultural drought severity using multiple remote sensing indices, including optical, thermal, and microwave sensors. Ten indices were computed and combined using the Analytic Hierarchy Process (AHP) to assign weights, aiming to establish a new agricultural drought index that can monitor severity, identify critical indices, and assess uncertainties in affected areas. Validation results from ROC-AUC indicate that the IDSI model achieved a precision exceeding 85% using empirical weights. The study area's mapping shows that approximately 8.91% experience extreme drought conditions, with significant impacts in specific districts of Odisha. This comprehensive tool provides critical insights for policymakers and farmers, enhancing global drought preparedness and response strategies through its adaptable methodology.</div></div>\",\"PeriodicalId\":53227,\"journal\":{\"name\":\"Remote Sensing Applications-Society and Environment\",\"volume\":\"37 \",\"pages\":\"Article 101399\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Remote Sensing Applications-Society and Environment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352938524002635\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing Applications-Society and Environment","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352938524002635","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Multisensor Integrated Drought Severity Index (IDSI) for assessing agricultural drought in Odisha, India
Recurrent droughts in India have severely impacted the economy and the quality of life. The agricultural drought from June to October 2023 in Odisha (the Kharif season), India, highlighted the urgent need for precise monitoring and assessment due to its significant effects on crop yield and food security. This study develops and validates the multisensor Integrated Drought Severity Index (IDSI) to accurately assess agricultural drought severity using multiple remote sensing indices, including optical, thermal, and microwave sensors. Ten indices were computed and combined using the Analytic Hierarchy Process (AHP) to assign weights, aiming to establish a new agricultural drought index that can monitor severity, identify critical indices, and assess uncertainties in affected areas. Validation results from ROC-AUC indicate that the IDSI model achieved a precision exceeding 85% using empirical weights. The study area's mapping shows that approximately 8.91% experience extreme drought conditions, with significant impacts in specific districts of Odisha. This comprehensive tool provides critical insights for policymakers and farmers, enhancing global drought preparedness and response strategies through its adaptable methodology.
期刊介绍:
The journal ''Remote Sensing Applications: Society and Environment'' (RSASE) focuses on remote sensing studies that address specific topics with an emphasis on environmental and societal issues - regional / local studies with global significance. Subjects are encouraged to have an interdisciplinary approach and include, but are not limited by: " -Global and climate change studies addressing the impact of increasing concentrations of greenhouse gases, CO2 emission, carbon balance and carbon mitigation, energy system on social and environmental systems -Ecological and environmental issues including biodiversity, ecosystem dynamics, land degradation, atmospheric and water pollution, urban footprint, ecosystem management and natural hazards (e.g. earthquakes, typhoons, floods, landslides) -Natural resource studies including land-use in general, biomass estimation, forests, agricultural land, plantation, soils, coral reefs, wetland and water resources -Agriculture, food production systems and food security outcomes -Socio-economic issues including urban systems, urban growth, public health, epidemics, land-use transition and land use conflicts -Oceanography and coastal zone studies, including sea level rise projections, coastlines changes and the ocean-land interface -Regional challenges for remote sensing application techniques, monitoring and analysis, such as cloud screening and atmospheric correction for tropical regions -Interdisciplinary studies combining remote sensing, household survey data, field measurements and models to address environmental, societal and sustainability issues -Quantitative and qualitative analysis that documents the impact of using remote sensing studies in social, political, environmental or economic systems