{"title":"完整约瑟夫立方体中与顶点无关的生成树","authors":"Qi He, Yan Wang, Jianxi Fan, Baolei Cheng","doi":"10.1016/j.tcs.2024.114969","DOIUrl":null,"url":null,"abstract":"<div><div>Vertex-independent spanning trees (short for VISTs) serve as pivotal constructs in numerous network algorithms and have been the subject of extensive research for three decades. The <em>n</em>-dimensional complete Josephus cube <span><math><mi>C</mi><mi>J</mi><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, derived from the Josephus cube, was first proposed to achieve better fault tolerance while maximizing routing efficiency (no sacrificing routing efficiency). Compared to the Josephus cube, it exhibits enhanced symmetry, improved connectivity, and better fault tolerance while maintaining efficient embedding, incremental scalability, and short diameter (<span><math><mo>⌈</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌉</mo></math></span>). This paper studies the existence and construction of <span><math><mi>n</mi><mo>+</mo><mn>2</mn></math></span> VISTs in <span><math><mi>C</mi><mi>J</mi><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> rooted at an arbitrary vertex. To determine the specific connection edge between vertex <em>v</em> and its parent in the spanning tree <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>, three algorithms were first proposed to calculate the values of <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>v</mi><mo>,</mo><mi>i</mi></mrow></msub></math></span>, <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>v</mi><mo>,</mo><mi>i</mi></mrow></msub></math></span>, and <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>v</mi><mo>,</mo><mi>i</mi></mrow></msub></math></span>, respectively, where <span><math><mi>v</mi><mo>∈</mo><mi>V</mi><mo>(</mo><mi>C</mi><mi>J</mi><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></math></span> and <span><math><mi>i</mi><mo>∈</mo><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mo>⋯</mo><mo>,</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>}</mo></math></span>. Based on these algorithms, a parallel algorithm is proposed to construct <span><math><mi>n</mi><mo>+</mo><mn>2</mn></math></span> (<span><math><mi>n</mi><mo>≥</mo><mn>4</mn></math></span>) VISTs in <span><math><mi>C</mi><mi>J</mi><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> using <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup></math></span> processors. As <span><math><mi>C</mi><mi>J</mi><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> is <span><math><mo>(</mo><mi>n</mi><mo>+</mo><mn>2</mn><mo>)</mo></math></span>-connected, our algorithm is designed to yield the optimal number of resulting VISTs for <span><math><mi>n</mi><mo>≥</mo><mn>4</mn></math></span>. Finally, we present the theoretical proof of the parallel algorithm and demonstrate that its time complexity is <span><math><mi>O</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span>.</div></div>","PeriodicalId":49438,"journal":{"name":"Theoretical Computer Science","volume":"1025 ","pages":"Article 114969"},"PeriodicalIF":0.9000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vertex-independent spanning trees in complete Josephus cubes\",\"authors\":\"Qi He, Yan Wang, Jianxi Fan, Baolei Cheng\",\"doi\":\"10.1016/j.tcs.2024.114969\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Vertex-independent spanning trees (short for VISTs) serve as pivotal constructs in numerous network algorithms and have been the subject of extensive research for three decades. The <em>n</em>-dimensional complete Josephus cube <span><math><mi>C</mi><mi>J</mi><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, derived from the Josephus cube, was first proposed to achieve better fault tolerance while maximizing routing efficiency (no sacrificing routing efficiency). Compared to the Josephus cube, it exhibits enhanced symmetry, improved connectivity, and better fault tolerance while maintaining efficient embedding, incremental scalability, and short diameter (<span><math><mo>⌈</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌉</mo></math></span>). This paper studies the existence and construction of <span><math><mi>n</mi><mo>+</mo><mn>2</mn></math></span> VISTs in <span><math><mi>C</mi><mi>J</mi><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> rooted at an arbitrary vertex. To determine the specific connection edge between vertex <em>v</em> and its parent in the spanning tree <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>, three algorithms were first proposed to calculate the values of <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>v</mi><mo>,</mo><mi>i</mi></mrow></msub></math></span>, <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>v</mi><mo>,</mo><mi>i</mi></mrow></msub></math></span>, and <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>v</mi><mo>,</mo><mi>i</mi></mrow></msub></math></span>, respectively, where <span><math><mi>v</mi><mo>∈</mo><mi>V</mi><mo>(</mo><mi>C</mi><mi>J</mi><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></math></span> and <span><math><mi>i</mi><mo>∈</mo><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mo>⋯</mo><mo>,</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>}</mo></math></span>. Based on these algorithms, a parallel algorithm is proposed to construct <span><math><mi>n</mi><mo>+</mo><mn>2</mn></math></span> (<span><math><mi>n</mi><mo>≥</mo><mn>4</mn></math></span>) VISTs in <span><math><mi>C</mi><mi>J</mi><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> using <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup></math></span> processors. As <span><math><mi>C</mi><mi>J</mi><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> is <span><math><mo>(</mo><mi>n</mi><mo>+</mo><mn>2</mn><mo>)</mo></math></span>-connected, our algorithm is designed to yield the optimal number of resulting VISTs for <span><math><mi>n</mi><mo>≥</mo><mn>4</mn></math></span>. Finally, we present the theoretical proof of the parallel algorithm and demonstrate that its time complexity is <span><math><mi>O</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span>.</div></div>\",\"PeriodicalId\":49438,\"journal\":{\"name\":\"Theoretical Computer Science\",\"volume\":\"1025 \",\"pages\":\"Article 114969\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304397524005863\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Computer Science","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304397524005863","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
摘要
顶点无关生成树(简称 VIST)是众多网络算法中的关键结构,三十年来一直是广泛研究的主题。由约瑟夫立方体衍生而来的 n 维完整约瑟夫立方体 CJCn 最早被提出,旨在实现更好的容错性,同时最大限度地提高路由效率(不牺牲路由效率)。与约瑟夫立方体相比,它在保持高效嵌入、增量可扩展性和短直径(⌈n2⌉)的同时,表现出更强的对称性、更好的连通性和更好的容错性。本文研究了 CJCn 中以任意顶点为根的 n+2 VIST 的存在和构造。为了确定顶点 v 与其父节点在生成树 Ti 中的具体连接边,首先提出了三种算法,分别计算 Fv,i、Mv,i 和 Hv,i 的值,其中 v∈V(CJCn),i∈{0,1,⋯,n+1}。在这些算法的基础上,提出了一种并行算法,使用 2n 个处理器在 CJCn 中构建 n+2 (n≥4) 个 VIST。由于 CJCn 是 (n+2)-connected 的,因此我们设计的算法能产生 n≥4 的最佳 VIST 数量。最后,我们给出了并行算法的理论证明,并证明其时间复杂度为 O(n)。
Vertex-independent spanning trees in complete Josephus cubes
Vertex-independent spanning trees (short for VISTs) serve as pivotal constructs in numerous network algorithms and have been the subject of extensive research for three decades. The n-dimensional complete Josephus cube , derived from the Josephus cube, was first proposed to achieve better fault tolerance while maximizing routing efficiency (no sacrificing routing efficiency). Compared to the Josephus cube, it exhibits enhanced symmetry, improved connectivity, and better fault tolerance while maintaining efficient embedding, incremental scalability, and short diameter (). This paper studies the existence and construction of VISTs in rooted at an arbitrary vertex. To determine the specific connection edge between vertex v and its parent in the spanning tree , three algorithms were first proposed to calculate the values of , , and , respectively, where and . Based on these algorithms, a parallel algorithm is proposed to construct () VISTs in using processors. As is -connected, our algorithm is designed to yield the optimal number of resulting VISTs for . Finally, we present the theoretical proof of the parallel algorithm and demonstrate that its time complexity is .
期刊介绍:
Theoretical Computer Science is mathematical and abstract in spirit, but it derives its motivation from practical and everyday computation. Its aim is to understand the nature of computation and, as a consequence of this understanding, provide more efficient methodologies. All papers introducing or studying mathematical, logic and formal concepts and methods are welcome, provided that their motivation is clearly drawn from the field of computing.