关于平面点集中新顶点的中心位置

IF 0.9 4区 计算机科学 Q3 COMPUTER SCIENCE, THEORY & METHODS
Peter Damaschke , Fredrik Ekstedt , Raad Salman
{"title":"关于平面点集中新顶点的中心位置","authors":"Peter Damaschke ,&nbsp;Fredrik Ekstedt ,&nbsp;Raad Salman","doi":"10.1016/j.tcs.2024.114973","DOIUrl":null,"url":null,"abstract":"<div><div>The vertices of an edge-weighted clique shall be placed in the plane so as to minimize the sum of all weighted distances, called the spread. Driven by practical applications in factory layout planning, we consider this problem under several constraints. First we show, in the Manhattan metric, the NP-completeness of the version where some vertices are already placed, and some minimum distance is prescribed between any two vertices. However, we can optimally append one new vertex to <em>n</em> placed vertices in <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span> time. For the problem without minimum distance requirements but with many unplaced vertices, we give some structural properties of optimal solutions.</div></div>","PeriodicalId":49438,"journal":{"name":"Theoretical Computer Science","volume":"1025 ","pages":"Article 114973"},"PeriodicalIF":0.9000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On central placements of new vertices in a planar point set\",\"authors\":\"Peter Damaschke ,&nbsp;Fredrik Ekstedt ,&nbsp;Raad Salman\",\"doi\":\"10.1016/j.tcs.2024.114973\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The vertices of an edge-weighted clique shall be placed in the plane so as to minimize the sum of all weighted distances, called the spread. Driven by practical applications in factory layout planning, we consider this problem under several constraints. First we show, in the Manhattan metric, the NP-completeness of the version where some vertices are already placed, and some minimum distance is prescribed between any two vertices. However, we can optimally append one new vertex to <em>n</em> placed vertices in <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span> time. For the problem without minimum distance requirements but with many unplaced vertices, we give some structural properties of optimal solutions.</div></div>\",\"PeriodicalId\":49438,\"journal\":{\"name\":\"Theoretical Computer Science\",\"volume\":\"1025 \",\"pages\":\"Article 114973\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304397524005905\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Computer Science","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304397524005905","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

边缘加权小块的顶点应放置在平面上,以最小化所有加权距离的总和,即扩散。在工厂布局规划实际应用的驱动下,我们在几个约束条件下考虑了这个问题。首先,在曼哈顿度量中,我们展示了一些顶点已被放置,且任意两个顶点之间规定了最小距离的版本的 NP 完备性。然而,我们可以在 O(n2) 时间内优化地将一个新顶点添加到 n 个已放置的顶点上。对于没有最小距离要求但有许多未放置顶点的问题,我们给出了最优解的一些结构特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On central placements of new vertices in a planar point set
The vertices of an edge-weighted clique shall be placed in the plane so as to minimize the sum of all weighted distances, called the spread. Driven by practical applications in factory layout planning, we consider this problem under several constraints. First we show, in the Manhattan metric, the NP-completeness of the version where some vertices are already placed, and some minimum distance is prescribed between any two vertices. However, we can optimally append one new vertex to n placed vertices in O(n2) time. For the problem without minimum distance requirements but with many unplaced vertices, we give some structural properties of optimal solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Theoretical Computer Science
Theoretical Computer Science 工程技术-计算机:理论方法
CiteScore
2.60
自引率
18.20%
发文量
471
审稿时长
12.6 months
期刊介绍: Theoretical Computer Science is mathematical and abstract in spirit, but it derives its motivation from practical and everyday computation. Its aim is to understand the nature of computation and, as a consequence of this understanding, provide more efficient methodologies. All papers introducing or studying mathematical, logic and formal concepts and methods are welcome, provided that their motivation is clearly drawn from the field of computing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信