使用无监督学习算法定义加利福尼亚湾自然地理区域

IF 2.1 4区 环境科学与生态学 Q3 ECOLOGY
Emigdio Marín-Enríquez , Víctor H. Cruz-Escalona , Arturo B. Enríquez-García , José Adán Félix-Ortiz
{"title":"使用无监督学习算法定义加利福尼亚湾自然地理区域","authors":"Emigdio Marín-Enríquez ,&nbsp;Víctor H. Cruz-Escalona ,&nbsp;Arturo B. Enríquez-García ,&nbsp;José Adán Félix-Ortiz","doi":"10.1016/j.rsma.2024.103923","DOIUrl":null,"url":null,"abstract":"<div><div>The Gulf of California (GOC) is a semi-enclosed sea off northwestern Mexico. It is considered one of the ten biodiversity hotspots of the world and sustains important fisheries at different scales. Unsupervised learning algorithms, particularly clustering techniques, can extract groups or clusters from the raw data; they do not require labelling the data a-priori, thus eliminating the subjectivity when assigning labels manually (i.e., supervised algorithms). In our study, we used a multivariate dataset of physical variables (Sea Surface Temperature, Salinity, Mixed Layer Depth, Sea Surface Height, and the U, V components of the geostrophic surface currents; 0.25° spatial resolution and monthly temporal resolution) and a hierarchical clustering algorithm to define physical regions in the GOC. We also defined minor, intermediate and major regions based on a quantile criterion. Our results indicate that 22 different regions exist in the GOC: eight minor, six intermediate, and eight major. More than one physical region was defined in every previously defined region, suggesting that the surface dynamics of the GOC are more complex than previously described.</div></div>","PeriodicalId":21070,"journal":{"name":"Regional Studies in Marine Science","volume":"80 ","pages":"Article 103923"},"PeriodicalIF":2.1000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Physical geographic regions in the Gulf of California defined using unsupervised learning algorithms\",\"authors\":\"Emigdio Marín-Enríquez ,&nbsp;Víctor H. Cruz-Escalona ,&nbsp;Arturo B. Enríquez-García ,&nbsp;José Adán Félix-Ortiz\",\"doi\":\"10.1016/j.rsma.2024.103923\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The Gulf of California (GOC) is a semi-enclosed sea off northwestern Mexico. It is considered one of the ten biodiversity hotspots of the world and sustains important fisheries at different scales. Unsupervised learning algorithms, particularly clustering techniques, can extract groups or clusters from the raw data; they do not require labelling the data a-priori, thus eliminating the subjectivity when assigning labels manually (i.e., supervised algorithms). In our study, we used a multivariate dataset of physical variables (Sea Surface Temperature, Salinity, Mixed Layer Depth, Sea Surface Height, and the U, V components of the geostrophic surface currents; 0.25° spatial resolution and monthly temporal resolution) and a hierarchical clustering algorithm to define physical regions in the GOC. We also defined minor, intermediate and major regions based on a quantile criterion. Our results indicate that 22 different regions exist in the GOC: eight minor, six intermediate, and eight major. More than one physical region was defined in every previously defined region, suggesting that the surface dynamics of the GOC are more complex than previously described.</div></div>\",\"PeriodicalId\":21070,\"journal\":{\"name\":\"Regional Studies in Marine Science\",\"volume\":\"80 \",\"pages\":\"Article 103923\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Regional Studies in Marine Science\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352485524005565\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Regional Studies in Marine Science","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352485524005565","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

加利福尼亚湾(GOC)是墨西哥西北部外海的一个半封闭海域。它被认为是世界十大生物多样性热点地区之一,并在不同规模上维持着重要的渔业。无监督学习算法,尤其是聚类技术,可以从原始数据中提取分组或聚类;它们不需要事先给数据贴标签,从而消除了人工分配标签(即监督算法)时的主观性。在我们的研究中,我们使用了物理变量的多元数据集(海面温度、盐度、混合层深度、海面高度和地表洋流的 U、V 分量;空间分辨率为 0.25°,时间分辨率为每月一次)和分层聚类算法来定义全球海洋观测系统中的物理区域。我们还根据量子标准定义了次要区域、中间区域和主要区域。结果表明,全球海洋观测系统中存在 22 个不同的区域:8 个次要区域、6 个中间区域和 8 个主要区域。在每个先前定义的区域中都定义了一个以上的物理区域,这表明 GOC 的表面动力学比先前描述的更为复杂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Physical geographic regions in the Gulf of California defined using unsupervised learning algorithms
The Gulf of California (GOC) is a semi-enclosed sea off northwestern Mexico. It is considered one of the ten biodiversity hotspots of the world and sustains important fisheries at different scales. Unsupervised learning algorithms, particularly clustering techniques, can extract groups or clusters from the raw data; they do not require labelling the data a-priori, thus eliminating the subjectivity when assigning labels manually (i.e., supervised algorithms). In our study, we used a multivariate dataset of physical variables (Sea Surface Temperature, Salinity, Mixed Layer Depth, Sea Surface Height, and the U, V components of the geostrophic surface currents; 0.25° spatial resolution and monthly temporal resolution) and a hierarchical clustering algorithm to define physical regions in the GOC. We also defined minor, intermediate and major regions based on a quantile criterion. Our results indicate that 22 different regions exist in the GOC: eight minor, six intermediate, and eight major. More than one physical region was defined in every previously defined region, suggesting that the surface dynamics of the GOC are more complex than previously described.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Regional Studies in Marine Science
Regional Studies in Marine Science Agricultural and Biological Sciences-Ecology, Evolution, Behavior and Systematics
CiteScore
3.90
自引率
4.80%
发文量
336
审稿时长
69 days
期刊介绍: REGIONAL STUDIES IN MARINE SCIENCE will publish scientifically sound papers on regional aspects of maritime and marine resources in estuaries, coastal zones, continental shelf, the seas and oceans.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信