{"title":"关于具有给定曲线截面的协方差集合的上界","authors":"Yao Ouyang , Yonghui Sun , Hua-Peng Zhang","doi":"10.1016/j.fss.2024.109199","DOIUrl":null,"url":null,"abstract":"<div><div>The characterizations when two natural upper bounds of the set of copulas with a given diagonal section are copulas have been well studied in the literature. Given a curvilinear section, however, there is only a partial result concerning the characterization when a natural upper bound of the set of copulas is a copula. In this paper, we completely solve the characterization problem for this natural upper bound to be a copula in the curvilinear case.</div></div>","PeriodicalId":55130,"journal":{"name":"Fuzzy Sets and Systems","volume":"500 ","pages":"Article 109199"},"PeriodicalIF":3.2000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On an upper bound of the set of copulas with a given curvilinear section\",\"authors\":\"Yao Ouyang , Yonghui Sun , Hua-Peng Zhang\",\"doi\":\"10.1016/j.fss.2024.109199\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The characterizations when two natural upper bounds of the set of copulas with a given diagonal section are copulas have been well studied in the literature. Given a curvilinear section, however, there is only a partial result concerning the characterization when a natural upper bound of the set of copulas is a copula. In this paper, we completely solve the characterization problem for this natural upper bound to be a copula in the curvilinear case.</div></div>\",\"PeriodicalId\":55130,\"journal\":{\"name\":\"Fuzzy Sets and Systems\",\"volume\":\"500 \",\"pages\":\"Article 109199\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fuzzy Sets and Systems\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165011424003452\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuzzy Sets and Systems","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165011424003452","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
On an upper bound of the set of copulas with a given curvilinear section
The characterizations when two natural upper bounds of the set of copulas with a given diagonal section are copulas have been well studied in the literature. Given a curvilinear section, however, there is only a partial result concerning the characterization when a natural upper bound of the set of copulas is a copula. In this paper, we completely solve the characterization problem for this natural upper bound to be a copula in the curvilinear case.
期刊介绍:
Since its launching in 1978, the journal Fuzzy Sets and Systems has been devoted to the international advancement of the theory and application of fuzzy sets and systems. The theory of fuzzy sets now encompasses a well organized corpus of basic notions including (and not restricted to) aggregation operations, a generalized theory of relations, specific measures of information content, a calculus of fuzzy numbers. Fuzzy sets are also the cornerstone of a non-additive uncertainty theory, namely possibility theory, and of a versatile tool for both linguistic and numerical modeling: fuzzy rule-based systems. Numerous works now combine fuzzy concepts with other scientific disciplines as well as modern technologies.
In mathematics fuzzy sets have triggered new research topics in connection with category theory, topology, algebra, analysis. Fuzzy sets are also part of a recent trend in the study of generalized measures and integrals, and are combined with statistical methods. Furthermore, fuzzy sets have strong logical underpinnings in the tradition of many-valued logics.