与可容许阶相关的 Choquet 类算子是汇总多值数据的工具

IF 3.2 1区 数学 Q2 COMPUTER SCIENCE, THEORY & METHODS
Michał Boczek, Tomasz Józefiak, Marek Kaluszka, Andrzej Okolewski
{"title":"与可容许阶相关的 Choquet 类算子是汇总多值数据的工具","authors":"Michał Boczek,&nbsp;Tomasz Józefiak,&nbsp;Marek Kaluszka,&nbsp;Andrzej Okolewski","doi":"10.1016/j.fss.2024.109197","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we propose a new generalization of the classical discrete Choquet integral to the multivalued framework in terms of an admissible order that refines the natural partial order on the considered value set. The new Choquet-like operator takes as input a finite number of values of a given type, in particular real numbers, intervals, and vectors, and returns a single output value of the same type as the input values. We give necessary and sufficient conditions for the operator to be monotone with respect to the admissible order. We then provide a complete characterization of the Choquet-like operator as an aggregation function with respect to the admissible order and study its selected special cases.</div></div>","PeriodicalId":55130,"journal":{"name":"Fuzzy Sets and Systems","volume":"500 ","pages":"Article 109197"},"PeriodicalIF":3.2000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Choquet-like operator with respect to an admissible order as a tool for aggregating multivalued data\",\"authors\":\"Michał Boczek,&nbsp;Tomasz Józefiak,&nbsp;Marek Kaluszka,&nbsp;Andrzej Okolewski\",\"doi\":\"10.1016/j.fss.2024.109197\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we propose a new generalization of the classical discrete Choquet integral to the multivalued framework in terms of an admissible order that refines the natural partial order on the considered value set. The new Choquet-like operator takes as input a finite number of values of a given type, in particular real numbers, intervals, and vectors, and returns a single output value of the same type as the input values. We give necessary and sufficient conditions for the operator to be monotone with respect to the admissible order. We then provide a complete characterization of the Choquet-like operator as an aggregation function with respect to the admissible order and study its selected special cases.</div></div>\",\"PeriodicalId\":55130,\"journal\":{\"name\":\"Fuzzy Sets and Systems\",\"volume\":\"500 \",\"pages\":\"Article 109197\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fuzzy Sets and Systems\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165011424003439\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuzzy Sets and Systems","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165011424003439","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了一种将经典离散 Choquet 积分推广到多值框架的新方法,即利用可容许阶来完善所考虑值集的自然偏阶。新的 Choquet 类算子将给定类型(尤其是实数、区间和向量)的有限数量的值作为输入,并返回与输入值类型相同的单个输出值。我们给出了该算子在可容许阶数方面单调的必要条件和充分条件。然后,我们将 Choquet 类算子完整地描述为一个与可容许阶相关的聚集函数,并研究其选定的特例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Choquet-like operator with respect to an admissible order as a tool for aggregating multivalued data
In this paper, we propose a new generalization of the classical discrete Choquet integral to the multivalued framework in terms of an admissible order that refines the natural partial order on the considered value set. The new Choquet-like operator takes as input a finite number of values of a given type, in particular real numbers, intervals, and vectors, and returns a single output value of the same type as the input values. We give necessary and sufficient conditions for the operator to be monotone with respect to the admissible order. We then provide a complete characterization of the Choquet-like operator as an aggregation function with respect to the admissible order and study its selected special cases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fuzzy Sets and Systems
Fuzzy Sets and Systems 数学-计算机:理论方法
CiteScore
6.50
自引率
17.90%
发文量
321
审稿时长
6.1 months
期刊介绍: Since its launching in 1978, the journal Fuzzy Sets and Systems has been devoted to the international advancement of the theory and application of fuzzy sets and systems. The theory of fuzzy sets now encompasses a well organized corpus of basic notions including (and not restricted to) aggregation operations, a generalized theory of relations, specific measures of information content, a calculus of fuzzy numbers. Fuzzy sets are also the cornerstone of a non-additive uncertainty theory, namely possibility theory, and of a versatile tool for both linguistic and numerical modeling: fuzzy rule-based systems. Numerous works now combine fuzzy concepts with other scientific disciplines as well as modern technologies. In mathematics fuzzy sets have triggered new research topics in connection with category theory, topology, algebra, analysis. Fuzzy sets are also part of a recent trend in the study of generalized measures and integrals, and are combined with statistical methods. Furthermore, fuzzy sets have strong logical underpinnings in the tradition of many-valued logics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信