用于监测考古遗址所受干扰和威胁的新型机器学习自动变化检测工具

IF 3.8 Q2 ENVIRONMENTAL SCIENCES
Ahmed Mutasim Abdalla Mahmoud , Nichole Sheldrick , Muftah Ahmed
{"title":"用于监测考古遗址所受干扰和威胁的新型机器学习自动变化检测工具","authors":"Ahmed Mutasim Abdalla Mahmoud ,&nbsp;Nichole Sheldrick ,&nbsp;Muftah Ahmed","doi":"10.1016/j.rsase.2024.101396","DOIUrl":null,"url":null,"abstract":"<div><div>Archaeological sites across the globe are facing significant threats and heritage managers are under increasing pressure to monitor and preserve these sites. Since 2015, the EAMENA project has documented more than 200,000 archaeological sites and the disturbances and threats affecting them across the Middle East and North Africa (MENA) region, using a combination of remote sensing, digitization, and fieldwork methodologies. The large number of sites and their often remote or otherwise difficult to access locations makes consistent and regular monitoring of these sites for disturbances and threats a daunting task. Combined with the increasing frequency and severity of threats to archaeological sites, the need to develop novel tools and methods that can rapidly monitor the changes at and around archaeological sites and provide accurate and consistent monitoring has never been more urgent. In this paper, we introduce the EAMENA Machine Learning Automated Change Detection tool (EAMENA MLACD). This newly-developed online tool uses bespoke machine learning algorithms to process sequential satellite images and create land classification maps to detect and identify disturbances and threats in the vicinity of known archaeological sites for the purposes of heritage monitoring and preservation. Initial testing and validation of results from the EAMENA MLACD in a case study in Bani Walid, Libya, demonstrate how it can be used to identify disturbances and potential threats to heritage sites, and increase the speed and efficiency of monitoring activities undertaken by heritage professionals.</div></div>","PeriodicalId":53227,"journal":{"name":"Remote Sensing Applications-Society and Environment","volume":"37 ","pages":"Article 101396"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel machine learning automated change detection tool for monitoring disturbances and threats to archaeological sites\",\"authors\":\"Ahmed Mutasim Abdalla Mahmoud ,&nbsp;Nichole Sheldrick ,&nbsp;Muftah Ahmed\",\"doi\":\"10.1016/j.rsase.2024.101396\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Archaeological sites across the globe are facing significant threats and heritage managers are under increasing pressure to monitor and preserve these sites. Since 2015, the EAMENA project has documented more than 200,000 archaeological sites and the disturbances and threats affecting them across the Middle East and North Africa (MENA) region, using a combination of remote sensing, digitization, and fieldwork methodologies. The large number of sites and their often remote or otherwise difficult to access locations makes consistent and regular monitoring of these sites for disturbances and threats a daunting task. Combined with the increasing frequency and severity of threats to archaeological sites, the need to develop novel tools and methods that can rapidly monitor the changes at and around archaeological sites and provide accurate and consistent monitoring has never been more urgent. In this paper, we introduce the EAMENA Machine Learning Automated Change Detection tool (EAMENA MLACD). This newly-developed online tool uses bespoke machine learning algorithms to process sequential satellite images and create land classification maps to detect and identify disturbances and threats in the vicinity of known archaeological sites for the purposes of heritage monitoring and preservation. Initial testing and validation of results from the EAMENA MLACD in a case study in Bani Walid, Libya, demonstrate how it can be used to identify disturbances and potential threats to heritage sites, and increase the speed and efficiency of monitoring activities undertaken by heritage professionals.</div></div>\",\"PeriodicalId\":53227,\"journal\":{\"name\":\"Remote Sensing Applications-Society and Environment\",\"volume\":\"37 \",\"pages\":\"Article 101396\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Remote Sensing Applications-Society and Environment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S235293852400260X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing Applications-Society and Environment","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S235293852400260X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

全球各地的考古遗址正面临着重大威胁,遗产管理者在监测和保护这些遗址方面面临着越来越大的压力。自 2015 年以来,EAMENA 项目采用遥感、数字化和实地考察相结合的方法,记录了中东和北非(MENA)地区 20 多万个考古遗址及其受到的干扰和威胁。由于遗址数量众多,而且往往地处偏远或交通不便,对这些遗址进行持续、定期的干扰和威胁监测是一项艰巨的任务。加之考古遗址面临的威胁日益频繁和严重,开发新型工具和方法以快速监测考古遗址及其周围的变化,并提供准确、一致的监测已成为当务之急。在本文中,我们将介绍 EAMENA 机器学习自动变化检测工具(EAMENA MLACD)。这款新开发的在线工具使用定制的机器学习算法来处理连续的卫星图像并创建土地分类图,以检测和识别已知考古遗址附近的干扰和威胁,从而达到遗产监测和保护的目的。在利比亚巴尼瓦利德进行的一项案例研究中,对 EAMENA MLACD 的结果进行了初步测试和验证,展示了如何利用该工具识别考古遗址受到的干扰和潜在威胁,以及如何提高遗产专业人员开展监测活动的速度和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel machine learning automated change detection tool for monitoring disturbances and threats to archaeological sites
Archaeological sites across the globe are facing significant threats and heritage managers are under increasing pressure to monitor and preserve these sites. Since 2015, the EAMENA project has documented more than 200,000 archaeological sites and the disturbances and threats affecting them across the Middle East and North Africa (MENA) region, using a combination of remote sensing, digitization, and fieldwork methodologies. The large number of sites and their often remote or otherwise difficult to access locations makes consistent and regular monitoring of these sites for disturbances and threats a daunting task. Combined with the increasing frequency and severity of threats to archaeological sites, the need to develop novel tools and methods that can rapidly monitor the changes at and around archaeological sites and provide accurate and consistent monitoring has never been more urgent. In this paper, we introduce the EAMENA Machine Learning Automated Change Detection tool (EAMENA MLACD). This newly-developed online tool uses bespoke machine learning algorithms to process sequential satellite images and create land classification maps to detect and identify disturbances and threats in the vicinity of known archaeological sites for the purposes of heritage monitoring and preservation. Initial testing and validation of results from the EAMENA MLACD in a case study in Bani Walid, Libya, demonstrate how it can be used to identify disturbances and potential threats to heritage sites, and increase the speed and efficiency of monitoring activities undertaken by heritage professionals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.00
自引率
8.50%
发文量
204
审稿时长
65 days
期刊介绍: The journal ''Remote Sensing Applications: Society and Environment'' (RSASE) focuses on remote sensing studies that address specific topics with an emphasis on environmental and societal issues - regional / local studies with global significance. Subjects are encouraged to have an interdisciplinary approach and include, but are not limited by: " -Global and climate change studies addressing the impact of increasing concentrations of greenhouse gases, CO2 emission, carbon balance and carbon mitigation, energy system on social and environmental systems -Ecological and environmental issues including biodiversity, ecosystem dynamics, land degradation, atmospheric and water pollution, urban footprint, ecosystem management and natural hazards (e.g. earthquakes, typhoons, floods, landslides) -Natural resource studies including land-use in general, biomass estimation, forests, agricultural land, plantation, soils, coral reefs, wetland and water resources -Agriculture, food production systems and food security outcomes -Socio-economic issues including urban systems, urban growth, public health, epidemics, land-use transition and land use conflicts -Oceanography and coastal zone studies, including sea level rise projections, coastlines changes and the ocean-land interface -Regional challenges for remote sensing application techniques, monitoring and analysis, such as cloud screening and atmospheric correction for tropical regions -Interdisciplinary studies combining remote sensing, household survey data, field measurements and models to address environmental, societal and sustainability issues -Quantitative and qualitative analysis that documents the impact of using remote sensing studies in social, political, environmental or economic systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信