基于大气顶部反射率检索气溶胶光学深度的高时空图像融合模型

IF 3.8 Q2 ENVIRONMENTAL SCIENCES
Chih-Yuan Huang , Hsuan-Chi Ho , Tang-Huang Lin
{"title":"基于大气顶部反射率检索气溶胶光学深度的高时空图像融合模型","authors":"Chih-Yuan Huang ,&nbsp;Hsuan-Chi Ho ,&nbsp;Tang-Huang Lin","doi":"10.1016/j.rsase.2024.101402","DOIUrl":null,"url":null,"abstract":"<div><div>With the growth in industrialization and urban development, air pollution has become an increasing serious health concern. Although ground stations can effectively monitor air quality, they generally observe only located phenomena and limited in the spatial distribution. Remote-sensing approaches have thus been employed by many scholars for air quality monitoring in an entire region. However, no single satellite equips with sufficient spatial and temporal resolutions for detecting rapidly changing local phenomena, such as air quality variations. A top-of-atmosphere reflectance–based spatial–temporal image fusion model (TOA-STFM) is proposed in this paper to solve this problem. The proposed TOA-STFM is modified based on the spatial–temporal adaptive reflectance fusion model (STARFM) and yields fused images in which atmospheric properties are retained. A key process in the TOA-STFM is blurring effect adjustment (BEA), which is performed to match the atmospheric effects caused by aerosols in images with different spatial resolutions. The feasibility of fusing Himawari-8 images with SPOT-6 images was evaluated in this study. We used the proposed model to extract aerosol optical depths (AODs) from images produced by fusing Himawari-8 and SPOT-6 images and compared the extracted AODs with corresponding in-situ observations made by the AErosol RObotic NETwork (AERONET). The AOD relative errors of the proposed TOA-STFM were 2.3%–7.6%, which is a significant improvement comparing to a relative error of 8.4%–13.5% from Himawari-8 images and existing AOD products.</div></div>","PeriodicalId":53227,"journal":{"name":"Remote Sensing Applications-Society and Environment","volume":"37 ","pages":"Article 101402"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High spatial–temporal image fusion model for retrieving aerosol optical depth based on top-of-atmosphere reflectance\",\"authors\":\"Chih-Yuan Huang ,&nbsp;Hsuan-Chi Ho ,&nbsp;Tang-Huang Lin\",\"doi\":\"10.1016/j.rsase.2024.101402\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>With the growth in industrialization and urban development, air pollution has become an increasing serious health concern. Although ground stations can effectively monitor air quality, they generally observe only located phenomena and limited in the spatial distribution. Remote-sensing approaches have thus been employed by many scholars for air quality monitoring in an entire region. However, no single satellite equips with sufficient spatial and temporal resolutions for detecting rapidly changing local phenomena, such as air quality variations. A top-of-atmosphere reflectance–based spatial–temporal image fusion model (TOA-STFM) is proposed in this paper to solve this problem. The proposed TOA-STFM is modified based on the spatial–temporal adaptive reflectance fusion model (STARFM) and yields fused images in which atmospheric properties are retained. A key process in the TOA-STFM is blurring effect adjustment (BEA), which is performed to match the atmospheric effects caused by aerosols in images with different spatial resolutions. The feasibility of fusing Himawari-8 images with SPOT-6 images was evaluated in this study. We used the proposed model to extract aerosol optical depths (AODs) from images produced by fusing Himawari-8 and SPOT-6 images and compared the extracted AODs with corresponding in-situ observations made by the AErosol RObotic NETwork (AERONET). The AOD relative errors of the proposed TOA-STFM were 2.3%–7.6%, which is a significant improvement comparing to a relative error of 8.4%–13.5% from Himawari-8 images and existing AOD products.</div></div>\",\"PeriodicalId\":53227,\"journal\":{\"name\":\"Remote Sensing Applications-Society and Environment\",\"volume\":\"37 \",\"pages\":\"Article 101402\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Remote Sensing Applications-Society and Environment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352938524002660\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing Applications-Society and Environment","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352938524002660","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

随着工业化和城市化的发展,空气污染已成为日益严重的健康问题。虽然地面站可以有效监测空气质量,但一般只能观测到局部现象,空间分布有限。因此,许多学者采用遥感方法来监测整个区域的空气质量。然而,没有一颗卫星具有足够的空间和时间分辨率来探测快速变化的局部现象,如空气质量变化。本文提出了一种基于大气层顶反射率的时空图像融合模型(TOA-STFM)来解决这一问题。所提出的 TOA-STFM 在时空自适应反射率融合模型(STARFM)的基础上进行了改进,得到的融合图像保留了大气属性。TOA-STFM 的一个关键过程是模糊效果调整(BEA),该过程是为了匹配不同空间分辨率图像中气溶胶造成的大气效应。本研究评估了将 Himawari-8 图像与 SPOT-6 图像融合的可行性。我们使用所提出的模型从向日葵-8 和 SPOT-6 图像融合后生成的图像中提取气溶胶光学深度(AOD),并将提取的 AOD 与气溶胶光学深度网络(AERONET)的相应原位观测数据进行比较。拟议的 TOA-STFM 的 AOD 相对误差为 2.3%-7.6%,与 Himawari-8 图像和现有 AOD 产品的 8.4%-13.5%的相对误差相比有了显著改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High spatial–temporal image fusion model for retrieving aerosol optical depth based on top-of-atmosphere reflectance
With the growth in industrialization and urban development, air pollution has become an increasing serious health concern. Although ground stations can effectively monitor air quality, they generally observe only located phenomena and limited in the spatial distribution. Remote-sensing approaches have thus been employed by many scholars for air quality monitoring in an entire region. However, no single satellite equips with sufficient spatial and temporal resolutions for detecting rapidly changing local phenomena, such as air quality variations. A top-of-atmosphere reflectance–based spatial–temporal image fusion model (TOA-STFM) is proposed in this paper to solve this problem. The proposed TOA-STFM is modified based on the spatial–temporal adaptive reflectance fusion model (STARFM) and yields fused images in which atmospheric properties are retained. A key process in the TOA-STFM is blurring effect adjustment (BEA), which is performed to match the atmospheric effects caused by aerosols in images with different spatial resolutions. The feasibility of fusing Himawari-8 images with SPOT-6 images was evaluated in this study. We used the proposed model to extract aerosol optical depths (AODs) from images produced by fusing Himawari-8 and SPOT-6 images and compared the extracted AODs with corresponding in-situ observations made by the AErosol RObotic NETwork (AERONET). The AOD relative errors of the proposed TOA-STFM were 2.3%–7.6%, which is a significant improvement comparing to a relative error of 8.4%–13.5% from Himawari-8 images and existing AOD products.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.00
自引率
8.50%
发文量
204
审稿时长
65 days
期刊介绍: The journal ''Remote Sensing Applications: Society and Environment'' (RSASE) focuses on remote sensing studies that address specific topics with an emphasis on environmental and societal issues - regional / local studies with global significance. Subjects are encouraged to have an interdisciplinary approach and include, but are not limited by: " -Global and climate change studies addressing the impact of increasing concentrations of greenhouse gases, CO2 emission, carbon balance and carbon mitigation, energy system on social and environmental systems -Ecological and environmental issues including biodiversity, ecosystem dynamics, land degradation, atmospheric and water pollution, urban footprint, ecosystem management and natural hazards (e.g. earthquakes, typhoons, floods, landslides) -Natural resource studies including land-use in general, biomass estimation, forests, agricultural land, plantation, soils, coral reefs, wetland and water resources -Agriculture, food production systems and food security outcomes -Socio-economic issues including urban systems, urban growth, public health, epidemics, land-use transition and land use conflicts -Oceanography and coastal zone studies, including sea level rise projections, coastlines changes and the ocean-land interface -Regional challenges for remote sensing application techniques, monitoring and analysis, such as cloud screening and atmospheric correction for tropical regions -Interdisciplinary studies combining remote sensing, household survey data, field measurements and models to address environmental, societal and sustainability issues -Quantitative and qualitative analysis that documents the impact of using remote sensing studies in social, political, environmental or economic systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信