环状词的一元论

IF 0.9 4区 计算机科学 Q3 COMPUTER SCIENCE, THEORY & METHODS
Valérie Berthé , Toghrul Karimov , Joris Nieuwveld , Joël Ouaknine , Mihir Vahanwala , James Worrell
{"title":"环状词的一元论","authors":"Valérie Berthé ,&nbsp;Toghrul Karimov ,&nbsp;Joris Nieuwveld ,&nbsp;Joël Ouaknine ,&nbsp;Mihir Vahanwala ,&nbsp;James Worrell","doi":"10.1016/j.tcs.2024.114959","DOIUrl":null,"url":null,"abstract":"<div><div>For which unary predicates <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span> is the MSO theory of the structure <span><math><mo>〈</mo><mi>N</mi><mo>;</mo><mo>&lt;</mo><mo>,</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>〉</mo></math></span> decidable? We survey the state of the art, leading us to investigate combinatorial properties of almost-periodic, morphic, and toric words. In doing so, we show that if each <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> can be generated by a toric dynamical system of a certain kind, then the attendant MSO theory is decidable. We give various applications of toric words, including the recent result of <span><span>[1]</span></span> that the MSO theory of <span><math><mo>〈</mo><mi>N</mi><mo>;</mo><mo>&lt;</mo><mo>,</mo><mo>{</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup><mo>:</mo><mi>n</mi><mo>∈</mo><mi>N</mi><mo>}</mo><mo>,</mo><mo>{</mo><msup><mrow><mn>3</mn></mrow><mrow><mi>n</mi></mrow></msup><mo>:</mo><mi>n</mi><mo>∈</mo><mi>N</mi><mo>}</mo><mo>〉</mo></math></span> is decidable.</div></div>","PeriodicalId":49438,"journal":{"name":"Theoretical Computer Science","volume":"1025 ","pages":"Article 114959"},"PeriodicalIF":0.9000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The monadic theory of toric words\",\"authors\":\"Valérie Berthé ,&nbsp;Toghrul Karimov ,&nbsp;Joris Nieuwveld ,&nbsp;Joël Ouaknine ,&nbsp;Mihir Vahanwala ,&nbsp;James Worrell\",\"doi\":\"10.1016/j.tcs.2024.114959\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>For which unary predicates <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span> is the MSO theory of the structure <span><math><mo>〈</mo><mi>N</mi><mo>;</mo><mo>&lt;</mo><mo>,</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>〉</mo></math></span> decidable? We survey the state of the art, leading us to investigate combinatorial properties of almost-periodic, morphic, and toric words. In doing so, we show that if each <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> can be generated by a toric dynamical system of a certain kind, then the attendant MSO theory is decidable. We give various applications of toric words, including the recent result of <span><span>[1]</span></span> that the MSO theory of <span><math><mo>〈</mo><mi>N</mi><mo>;</mo><mo>&lt;</mo><mo>,</mo><mo>{</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup><mo>:</mo><mi>n</mi><mo>∈</mo><mi>N</mi><mo>}</mo><mo>,</mo><mo>{</mo><msup><mrow><mn>3</mn></mrow><mrow><mi>n</mi></mrow></msup><mo>:</mo><mi>n</mi><mo>∈</mo><mi>N</mi><mo>}</mo><mo>〉</mo></math></span> is decidable.</div></div>\",\"PeriodicalId\":49438,\"journal\":{\"name\":\"Theoretical Computer Science\",\"volume\":\"1025 \",\"pages\":\"Article 114959\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304397524005760\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Computer Science","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304397524005760","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

对于哪些一元谓词 P1、......、Pm,〈N;<,P1,......,Pm〉结构的 MSO 理论是可解的?我们考察了这一领域的现状,并由此研究了近周期词、形态词和环状词的组合性质。在此过程中,我们证明,如果每个 Pi 都可以由某类环状动力系统生成,那么相应的 MSO 理论就是可解的。我们给出了环状词的各种应用,包括 [1] 的最新结果:〈N;<,{2n:n∈N},{3n:n∈N}〉的 MSO 理论是可判定的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The monadic theory of toric words
For which unary predicates P1,,Pm is the MSO theory of the structure N;<,P1,,Pm decidable? We survey the state of the art, leading us to investigate combinatorial properties of almost-periodic, morphic, and toric words. In doing so, we show that if each Pi can be generated by a toric dynamical system of a certain kind, then the attendant MSO theory is decidable. We give various applications of toric words, including the recent result of [1] that the MSO theory of N;<,{2n:nN},{3n:nN} is decidable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Theoretical Computer Science
Theoretical Computer Science 工程技术-计算机:理论方法
CiteScore
2.60
自引率
18.20%
发文量
471
审稿时长
12.6 months
期刊介绍: Theoretical Computer Science is mathematical and abstract in spirit, but it derives its motivation from practical and everyday computation. Its aim is to understand the nature of computation and, as a consequence of this understanding, provide more efficient methodologies. All papers introducing or studying mathematical, logic and formal concepts and methods are welcome, provided that their motivation is clearly drawn from the field of computing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信