Valérie Berthé , Toghrul Karimov , Joris Nieuwveld , Joël Ouaknine , Mihir Vahanwala , James Worrell
{"title":"环状词的一元论","authors":"Valérie Berthé , Toghrul Karimov , Joris Nieuwveld , Joël Ouaknine , Mihir Vahanwala , James Worrell","doi":"10.1016/j.tcs.2024.114959","DOIUrl":null,"url":null,"abstract":"<div><div>For which unary predicates <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span> is the MSO theory of the structure <span><math><mo>〈</mo><mi>N</mi><mo>;</mo><mo><</mo><mo>,</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>〉</mo></math></span> decidable? We survey the state of the art, leading us to investigate combinatorial properties of almost-periodic, morphic, and toric words. In doing so, we show that if each <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> can be generated by a toric dynamical system of a certain kind, then the attendant MSO theory is decidable. We give various applications of toric words, including the recent result of <span><span>[1]</span></span> that the MSO theory of <span><math><mo>〈</mo><mi>N</mi><mo>;</mo><mo><</mo><mo>,</mo><mo>{</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup><mo>:</mo><mi>n</mi><mo>∈</mo><mi>N</mi><mo>}</mo><mo>,</mo><mo>{</mo><msup><mrow><mn>3</mn></mrow><mrow><mi>n</mi></mrow></msup><mo>:</mo><mi>n</mi><mo>∈</mo><mi>N</mi><mo>}</mo><mo>〉</mo></math></span> is decidable.</div></div>","PeriodicalId":49438,"journal":{"name":"Theoretical Computer Science","volume":"1025 ","pages":"Article 114959"},"PeriodicalIF":0.9000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The monadic theory of toric words\",\"authors\":\"Valérie Berthé , Toghrul Karimov , Joris Nieuwveld , Joël Ouaknine , Mihir Vahanwala , James Worrell\",\"doi\":\"10.1016/j.tcs.2024.114959\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>For which unary predicates <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span> is the MSO theory of the structure <span><math><mo>〈</mo><mi>N</mi><mo>;</mo><mo><</mo><mo>,</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>〉</mo></math></span> decidable? We survey the state of the art, leading us to investigate combinatorial properties of almost-periodic, morphic, and toric words. In doing so, we show that if each <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> can be generated by a toric dynamical system of a certain kind, then the attendant MSO theory is decidable. We give various applications of toric words, including the recent result of <span><span>[1]</span></span> that the MSO theory of <span><math><mo>〈</mo><mi>N</mi><mo>;</mo><mo><</mo><mo>,</mo><mo>{</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup><mo>:</mo><mi>n</mi><mo>∈</mo><mi>N</mi><mo>}</mo><mo>,</mo><mo>{</mo><msup><mrow><mn>3</mn></mrow><mrow><mi>n</mi></mrow></msup><mo>:</mo><mi>n</mi><mo>∈</mo><mi>N</mi><mo>}</mo><mo>〉</mo></math></span> is decidable.</div></div>\",\"PeriodicalId\":49438,\"journal\":{\"name\":\"Theoretical Computer Science\",\"volume\":\"1025 \",\"pages\":\"Article 114959\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304397524005760\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Computer Science","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304397524005760","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
For which unary predicates is the MSO theory of the structure decidable? We survey the state of the art, leading us to investigate combinatorial properties of almost-periodic, morphic, and toric words. In doing so, we show that if each can be generated by a toric dynamical system of a certain kind, then the attendant MSO theory is decidable. We give various applications of toric words, including the recent result of [1] that the MSO theory of is decidable.
期刊介绍:
Theoretical Computer Science is mathematical and abstract in spirit, but it derives its motivation from practical and everyday computation. Its aim is to understand the nature of computation and, as a consequence of this understanding, provide more efficient methodologies. All papers introducing or studying mathematical, logic and formal concepts and methods are welcome, provided that their motivation is clearly drawn from the field of computing.