HaRNaT - 利用新闻的动态标签推荐系统

Q1 Social Sciences
Divya Gupta, Shampa Chakraverty
{"title":"HaRNaT - 利用新闻的动态标签推荐系统","authors":"Divya Gupta,&nbsp;Shampa Chakraverty","doi":"10.1016/j.osnem.2024.100294","DOIUrl":null,"url":null,"abstract":"<div><div>Microblogging platforms such as <em>X</em> and <em>Mastadon</em> have evolved into significant data sources, where the Hashtag Recommendation System (HRS) is being devised to automate the recommendation of hashtags for user queries. We propose a context-sensitive, Machine Learning based HRS named <em>HaRNaT</em>, that strategically leverages news articles to identify pertinent keywords and subjects related to a query. It interprets the fresh context of a query and tracks the evolving dynamics of hashtags to evaluate their relevance in the present context. In contrast to prior methods that primarily rely on microblog content for hashtag recommendation, <em>HaRNaT</em> mines contextually related microblogs and assesses the relevance of co-occurring hashtags with news information. To accomplish this, it evaluates hashtag features, including pertinence, popularity among users, and association with other hashtags. In performance evaluation of <em>HaRNaT</em> trained on these features demonstrates a macro-averaged precision of 84% with Naive Bayes and 80% with Logistic Regression. Compared to <em>Hashtagify</em>- a hashtag search engine, <em>HaRNaT</em> offers a dynamically evolving set of hashtags.</div></div>","PeriodicalId":52228,"journal":{"name":"Online Social Networks and Media","volume":"45 ","pages":"Article 100294"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"HaRNaT - A dynamic hashtag recommendation system using news\",\"authors\":\"Divya Gupta,&nbsp;Shampa Chakraverty\",\"doi\":\"10.1016/j.osnem.2024.100294\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Microblogging platforms such as <em>X</em> and <em>Mastadon</em> have evolved into significant data sources, where the Hashtag Recommendation System (HRS) is being devised to automate the recommendation of hashtags for user queries. We propose a context-sensitive, Machine Learning based HRS named <em>HaRNaT</em>, that strategically leverages news articles to identify pertinent keywords and subjects related to a query. It interprets the fresh context of a query and tracks the evolving dynamics of hashtags to evaluate their relevance in the present context. In contrast to prior methods that primarily rely on microblog content for hashtag recommendation, <em>HaRNaT</em> mines contextually related microblogs and assesses the relevance of co-occurring hashtags with news information. To accomplish this, it evaluates hashtag features, including pertinence, popularity among users, and association with other hashtags. In performance evaluation of <em>HaRNaT</em> trained on these features demonstrates a macro-averaged precision of 84% with Naive Bayes and 80% with Logistic Regression. Compared to <em>Hashtagify</em>- a hashtag search engine, <em>HaRNaT</em> offers a dynamically evolving set of hashtags.</div></div>\",\"PeriodicalId\":52228,\"journal\":{\"name\":\"Online Social Networks and Media\",\"volume\":\"45 \",\"pages\":\"Article 100294\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Online Social Networks and Media\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468696424000193\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Online Social Networks and Media","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468696424000193","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0

摘要

X 和 Mastadon 等微博平台已发展成为重要的数据源,其中的标签推荐系统(HRS)被设计用于为用户查询自动推荐标签。我们提出了一种基于机器学习的上下文敏感型 HRS,名为 HaRNaT,它能战略性地利用新闻文章来识别与查询相关的关键词和主题。它能解释查询的新上下文,并跟踪标签不断变化的动态,以评估其在当前上下文中的相关性。与之前主要依靠微博内容进行标签推荐的方法不同,HaRNaT 可挖掘与上下文相关的微博,并评估与新闻信息共同出现的标签的相关性。为此,它评估了标签的特征,包括相关性、在用户中的流行度以及与其他标签的关联性。根据这些特征对 HaRNaT 进行的性能评估表明,使用 Naive Bayes 算法的宏观平均精确度为 84%,使用 Logistic Regression 算法的宏观平均精确度为 80%。与 Hashtagify(一种标签搜索引擎)相比,HaRNaT 提供了一组动态演化的标签。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
HaRNaT - A dynamic hashtag recommendation system using news
Microblogging platforms such as X and Mastadon have evolved into significant data sources, where the Hashtag Recommendation System (HRS) is being devised to automate the recommendation of hashtags for user queries. We propose a context-sensitive, Machine Learning based HRS named HaRNaT, that strategically leverages news articles to identify pertinent keywords and subjects related to a query. It interprets the fresh context of a query and tracks the evolving dynamics of hashtags to evaluate their relevance in the present context. In contrast to prior methods that primarily rely on microblog content for hashtag recommendation, HaRNaT mines contextually related microblogs and assesses the relevance of co-occurring hashtags with news information. To accomplish this, it evaluates hashtag features, including pertinence, popularity among users, and association with other hashtags. In performance evaluation of HaRNaT trained on these features demonstrates a macro-averaged precision of 84% with Naive Bayes and 80% with Logistic Regression. Compared to Hashtagify- a hashtag search engine, HaRNaT offers a dynamically evolving set of hashtags.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Online Social Networks and Media
Online Social Networks and Media Social Sciences-Communication
CiteScore
10.60
自引率
0.00%
发文量
32
审稿时长
44 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信