Jinyao Zhu , Jia Ma , Jinbao Chen , Chen Wang , Yunfeng Li , Zhihao Fan , Chaoyu Lu
{"title":"利用仿生着陆器的设计和控制提高月球探测的着陆稳定性和地形适应性","authors":"Jinyao Zhu , Jia Ma , Jinbao Chen , Chen Wang , Yunfeng Li , Zhihao Fan , Chaoyu Lu","doi":"10.1016/j.actaastro.2024.11.020","DOIUrl":null,"url":null,"abstract":"<div><div>Traditional lunar landers face challenges due to strict flatness requirements at landing sites and the need to avoid complex terrains, which significantly limits their exploration capabilities and success rates. Additionally, their focus on stable landings often compromises their maneuverability, reducing adaptability to various lunar terrains. To address these issues, this study introduces a walkable cat-legged lander (WCLL) inspired by feline landing mechanisms. The WCLL integrates features from both traditional landers and rovers, enabling it to perform high-load landings and navigate effectively across diverse lunar surfaces. It utilizes magnetorheological dampers to dissipate impact energy and employs a soft-landing control method, achieving stable landings under various conditions, including vertical velocities of 3 m/s, payloads of 1280 kg, slopes of 15°, and horizontal disturbances at speeds of 2 m/s. Compared to the Chang'e−3 lander, the WCLL shows a 66.7 % increase in slope adaptability and a 22.6 % improvement in resistance to horizontal disturbances. Finally, experimental validation confirms the accuracy of the simulation model, providing valuable insights for future lunar exploration robot design.</div></div>","PeriodicalId":44971,"journal":{"name":"Acta Astronautica","volume":"226 ","pages":"Pages 860-875"},"PeriodicalIF":3.1000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving landing stability and terrain adaptability in Lunar exploration with biomimetic lander design and control\",\"authors\":\"Jinyao Zhu , Jia Ma , Jinbao Chen , Chen Wang , Yunfeng Li , Zhihao Fan , Chaoyu Lu\",\"doi\":\"10.1016/j.actaastro.2024.11.020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Traditional lunar landers face challenges due to strict flatness requirements at landing sites and the need to avoid complex terrains, which significantly limits their exploration capabilities and success rates. Additionally, their focus on stable landings often compromises their maneuverability, reducing adaptability to various lunar terrains. To address these issues, this study introduces a walkable cat-legged lander (WCLL) inspired by feline landing mechanisms. The WCLL integrates features from both traditional landers and rovers, enabling it to perform high-load landings and navigate effectively across diverse lunar surfaces. It utilizes magnetorheological dampers to dissipate impact energy and employs a soft-landing control method, achieving stable landings under various conditions, including vertical velocities of 3 m/s, payloads of 1280 kg, slopes of 15°, and horizontal disturbances at speeds of 2 m/s. Compared to the Chang'e−3 lander, the WCLL shows a 66.7 % increase in slope adaptability and a 22.6 % improvement in resistance to horizontal disturbances. Finally, experimental validation confirms the accuracy of the simulation model, providing valuable insights for future lunar exploration robot design.</div></div>\",\"PeriodicalId\":44971,\"journal\":{\"name\":\"Acta Astronautica\",\"volume\":\"226 \",\"pages\":\"Pages 860-875\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Astronautica\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0094576524006684\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Astronautica","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0094576524006684","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
Improving landing stability and terrain adaptability in Lunar exploration with biomimetic lander design and control
Traditional lunar landers face challenges due to strict flatness requirements at landing sites and the need to avoid complex terrains, which significantly limits their exploration capabilities and success rates. Additionally, their focus on stable landings often compromises their maneuverability, reducing adaptability to various lunar terrains. To address these issues, this study introduces a walkable cat-legged lander (WCLL) inspired by feline landing mechanisms. The WCLL integrates features from both traditional landers and rovers, enabling it to perform high-load landings and navigate effectively across diverse lunar surfaces. It utilizes magnetorheological dampers to dissipate impact energy and employs a soft-landing control method, achieving stable landings under various conditions, including vertical velocities of 3 m/s, payloads of 1280 kg, slopes of 15°, and horizontal disturbances at speeds of 2 m/s. Compared to the Chang'e−3 lander, the WCLL shows a 66.7 % increase in slope adaptability and a 22.6 % improvement in resistance to horizontal disturbances. Finally, experimental validation confirms the accuracy of the simulation model, providing valuable insights for future lunar exploration robot design.
期刊介绍:
Acta Astronautica is sponsored by the International Academy of Astronautics. Content is based on original contributions in all fields of basic, engineering, life and social space sciences and of space technology related to:
The peaceful scientific exploration of space,
Its exploitation for human welfare and progress,
Conception, design, development and operation of space-borne and Earth-based systems,
In addition to regular issues, the journal publishes selected proceedings of the annual International Astronautical Congress (IAC), transactions of the IAA and special issues on topics of current interest, such as microgravity, space station technology, geostationary orbits, and space economics. Other subject areas include satellite technology, space transportation and communications, space energy, power and propulsion, astrodynamics, extraterrestrial intelligence and Earth observations.