将利用特权信息的学习范式扩展到逻辑回归

IF 5.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Mario Martínez-García , Susana García-Gutierrez , Lasai Barreñada , Iñaki Inza , Jose A. Lozano
{"title":"将利用特权信息的学习范式扩展到逻辑回归","authors":"Mario Martínez-García ,&nbsp;Susana García-Gutierrez ,&nbsp;Lasai Barreñada ,&nbsp;Iñaki Inza ,&nbsp;Jose A. Lozano","doi":"10.1016/j.neucom.2024.128869","DOIUrl":null,"url":null,"abstract":"<div><div>Learning using privileged information paradigm is a learning scenario that exploits privileged features, available at training time, but not at prediction, as additional information for training models. This paper delves into the learning of logistic regression models using privileged information. We provide two new algorithms. For its development, the parameters of a conventional logistic regression trained with all available features, privileged and regular, are projected onto the parameter space associated to regular features (available at training and prediction time). The projection to obtain the model parameters is performed by the minimization of two different loss functions governed by logit terms and posterior probabilities. In addition, a metric is proposed to determine whether the use of privileged information can enhance performance. Experimental results report improvements of our proposals over the performance of conventional logistic regression learned without privileged information.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"615 ","pages":"Article 128869"},"PeriodicalIF":5.5000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extending the learning using privileged information paradigm to logistic regression\",\"authors\":\"Mario Martínez-García ,&nbsp;Susana García-Gutierrez ,&nbsp;Lasai Barreñada ,&nbsp;Iñaki Inza ,&nbsp;Jose A. Lozano\",\"doi\":\"10.1016/j.neucom.2024.128869\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Learning using privileged information paradigm is a learning scenario that exploits privileged features, available at training time, but not at prediction, as additional information for training models. This paper delves into the learning of logistic regression models using privileged information. We provide two new algorithms. For its development, the parameters of a conventional logistic regression trained with all available features, privileged and regular, are projected onto the parameter space associated to regular features (available at training and prediction time). The projection to obtain the model parameters is performed by the minimization of two different loss functions governed by logit terms and posterior probabilities. In addition, a metric is proposed to determine whether the use of privileged information can enhance performance. Experimental results report improvements of our proposals over the performance of conventional logistic regression learned without privileged information.</div></div>\",\"PeriodicalId\":19268,\"journal\":{\"name\":\"Neurocomputing\",\"volume\":\"615 \",\"pages\":\"Article 128869\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurocomputing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925231224016400\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231224016400","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

利用特权信息范式学习是一种利用在训练时可用但在预测时不可用的特权特征作为额外信息来训练模型的学习方案。本文深入探讨了利用特权信息学习逻辑回归模型。我们提供了两种新算法。在开发过程中,使用所有可用特征(特权特征和常规特征)训练的传统逻辑回归参数被投射到与常规特征(在训练和预测时可用)相关的参数空间上。通过对两个不同的损失函数(受对数项和后验概率的制约)进行最小化,投影得到模型参数。此外,我们还提出了一种衡量标准,以确定特权信息的使用是否能提高性能。实验结果表明,与传统的逻辑回归相比,我们的建议在不使用特权信息的情况下提高了性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extending the learning using privileged information paradigm to logistic regression
Learning using privileged information paradigm is a learning scenario that exploits privileged features, available at training time, but not at prediction, as additional information for training models. This paper delves into the learning of logistic regression models using privileged information. We provide two new algorithms. For its development, the parameters of a conventional logistic regression trained with all available features, privileged and regular, are projected onto the parameter space associated to regular features (available at training and prediction time). The projection to obtain the model parameters is performed by the minimization of two different loss functions governed by logit terms and posterior probabilities. In addition, a metric is proposed to determine whether the use of privileged information can enhance performance. Experimental results report improvements of our proposals over the performance of conventional logistic regression learned without privileged information.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信