减轻用剑麻纤维加固的土壤在冻融循环中的冻胀现象

IF 4.7 1区 工程技术 Q1 ENGINEERING, GEOLOGICAL
Fei Deng , Jianguo Lu , Xusheng Wan , Boshi Liu , Binlong Zhang , Hao Fu
{"title":"减轻用剑麻纤维加固的土壤在冻融循环中的冻胀现象","authors":"Fei Deng ,&nbsp;Jianguo Lu ,&nbsp;Xusheng Wan ,&nbsp;Boshi Liu ,&nbsp;Binlong Zhang ,&nbsp;Hao Fu","doi":"10.1016/j.geotexmem.2024.10.005","DOIUrl":null,"url":null,"abstract":"<div><div>To embrace sustainable and environmentally friendly practices, sisal fibers have emerged as a green and low-carbon alternative, offering a viable approach for enhancing the physical characteristics of frost-vulnerable soils. In this study, the unconfined compressive strength and freeze-thaw cycle (FTC) tests for soils stabilized with sisal fiber were conducted, and the enhancement mechanism of sisal fibers on soils in cold regions was analyzed. The results showed that as the sisal fiber content raised, the unconfined compressive strength of the soil samples initially increased and then decreased, which reached a peak at 0.9% sisal fiber content. The heat flux in the sisal fiber-reinforced soil samples exhibited a more dramatic variation than that in the soils without adding fibers during the water-ice phase transition stage. The unfrozen water hysteresis in the fiber-reinforced soil samples initially decreased and then increased as the soil temperature decreased. With an increase in the FTCs, the frost heave for sisal fiber-reinforced soil samples occurred, whereas settlement appeared in the soils without adding fibers. The cumulative deformation of sisal fiber-reinforced soil samples was lower than that of the soils without adding fibers. Additionally, the thaw settlement rate was lower than that of frost heave rate for sisal fiber-reinforced soil samples, while the reverse results were occurred for the soils without adding fibers. The addition of sisal fibers established a more robust structural integrity to the soils.</div></div>","PeriodicalId":55096,"journal":{"name":"Geotextiles and Geomembranes","volume":"53 1","pages":"Pages 394-404"},"PeriodicalIF":4.7000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mitigating frost heave of a soil stabilized with sisal fiber exposed to freeze-thaw cycles\",\"authors\":\"Fei Deng ,&nbsp;Jianguo Lu ,&nbsp;Xusheng Wan ,&nbsp;Boshi Liu ,&nbsp;Binlong Zhang ,&nbsp;Hao Fu\",\"doi\":\"10.1016/j.geotexmem.2024.10.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>To embrace sustainable and environmentally friendly practices, sisal fibers have emerged as a green and low-carbon alternative, offering a viable approach for enhancing the physical characteristics of frost-vulnerable soils. In this study, the unconfined compressive strength and freeze-thaw cycle (FTC) tests for soils stabilized with sisal fiber were conducted, and the enhancement mechanism of sisal fibers on soils in cold regions was analyzed. The results showed that as the sisal fiber content raised, the unconfined compressive strength of the soil samples initially increased and then decreased, which reached a peak at 0.9% sisal fiber content. The heat flux in the sisal fiber-reinforced soil samples exhibited a more dramatic variation than that in the soils without adding fibers during the water-ice phase transition stage. The unfrozen water hysteresis in the fiber-reinforced soil samples initially decreased and then increased as the soil temperature decreased. With an increase in the FTCs, the frost heave for sisal fiber-reinforced soil samples occurred, whereas settlement appeared in the soils without adding fibers. The cumulative deformation of sisal fiber-reinforced soil samples was lower than that of the soils without adding fibers. Additionally, the thaw settlement rate was lower than that of frost heave rate for sisal fiber-reinforced soil samples, while the reverse results were occurred for the soils without adding fibers. The addition of sisal fibers established a more robust structural integrity to the soils.</div></div>\",\"PeriodicalId\":55096,\"journal\":{\"name\":\"Geotextiles and Geomembranes\",\"volume\":\"53 1\",\"pages\":\"Pages 394-404\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geotextiles and Geomembranes\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0266114424001250\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geotextiles and Geomembranes","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266114424001250","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

摘要

为了实现可持续发展和环境友好型实践,剑麻纤维作为一种绿色低碳的替代品应运而生,为增强易冻土壤的物理特性提供了一种可行的方法。本研究对使用剑麻纤维稳定的土壤进行了无压抗压强度和冻融循环(FTC)试验,并分析了剑麻纤维对寒冷地区土壤的增强机理。结果表明,随着剑麻纤维含量的增加,土样的无压抗压强度先上升后下降,在剑麻纤维含量为 0.9% 时达到峰值。在水冰相变阶段,剑麻纤维加固土样中的热通量比未添加纤维的土样中的热通量变化更为剧烈。随着土壤温度的降低,纤维加固土壤样品中的解冻水滞后最初会减小,然后增大。随着 FTCs 的增加,剑麻纤维加筋土样出现了冻胀,而未添加纤维的土样则出现了沉降。剑麻纤维加固土样的累积变形量低于未添加纤维的土样。此外,剑麻纤维加固土样的解冻沉降率低于冻胀率,而未添加纤维的土样则相反。添加剑麻纤维后,土壤的结构更加坚固。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mitigating frost heave of a soil stabilized with sisal fiber exposed to freeze-thaw cycles
To embrace sustainable and environmentally friendly practices, sisal fibers have emerged as a green and low-carbon alternative, offering a viable approach for enhancing the physical characteristics of frost-vulnerable soils. In this study, the unconfined compressive strength and freeze-thaw cycle (FTC) tests for soils stabilized with sisal fiber were conducted, and the enhancement mechanism of sisal fibers on soils in cold regions was analyzed. The results showed that as the sisal fiber content raised, the unconfined compressive strength of the soil samples initially increased and then decreased, which reached a peak at 0.9% sisal fiber content. The heat flux in the sisal fiber-reinforced soil samples exhibited a more dramatic variation than that in the soils without adding fibers during the water-ice phase transition stage. The unfrozen water hysteresis in the fiber-reinforced soil samples initially decreased and then increased as the soil temperature decreased. With an increase in the FTCs, the frost heave for sisal fiber-reinforced soil samples occurred, whereas settlement appeared in the soils without adding fibers. The cumulative deformation of sisal fiber-reinforced soil samples was lower than that of the soils without adding fibers. Additionally, the thaw settlement rate was lower than that of frost heave rate for sisal fiber-reinforced soil samples, while the reverse results were occurred for the soils without adding fibers. The addition of sisal fibers established a more robust structural integrity to the soils.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geotextiles and Geomembranes
Geotextiles and Geomembranes 地学-地球科学综合
CiteScore
9.50
自引率
21.20%
发文量
111
审稿时长
59 days
期刊介绍: The range of products and their applications has expanded rapidly over the last decade with geotextiles and geomembranes being specified world wide. This rapid growth is paralleled by a virtual explosion of technology. Current reference books and even manufacturers' sponsored publications tend to date very quickly and the need for a vehicle to bring together and discuss the growing body of technology now available has become evident. Geotextiles and Geomembranes fills this need and provides a forum for the dissemination of information amongst research workers, designers, users and manufacturers. By providing a growing fund of information the journal increases general awareness, prompts further research and assists in the establishment of international codes and regulations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信