{"title":"实解析差分的李群是 L1 规则的","authors":"Helge Glöckner","doi":"10.1016/j.na.2024.113690","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>M</mi></math></span> be a compact, real analytic manifold and <span><math><mrow><mi>G</mi><mo>≔</mo><msup><mrow><mo>Diff</mo></mrow><mrow><mi>ω</mi></mrow></msup><mrow><mo>(</mo><mi>M</mi><mo>)</mo></mrow></mrow></math></span> be the Lie group of all real-analytic diffeomorphisms <span><math><mrow><mi>γ</mi><mo>:</mo><mi>M</mi><mo>→</mo><mi>M</mi></mrow></math></span>, which is modelled on the locally convex space <span><math><mrow><mi>g</mi><mo>≔</mo><msup><mrow><mi>Γ</mi></mrow><mrow><mi>ω</mi></mrow></msup><mrow><mo>(</mo><mi>T</mi><mi>M</mi><mo>)</mo></mrow></mrow></math></span> of real-analytic vector fields on <span><math><mi>M</mi></math></span>. Let <span><math><mrow><mo>AC</mo><mrow><mo>(</mo><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow><mo>,</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> be the Lie group of all absolutely continuous functions <span><math><mrow><mi>η</mi><mo>:</mo><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow><mo>→</mo><mi>G</mi></mrow></math></span>. We study flows of time-dependent real-analytic vector fields on <span><math><mi>M</mi></math></span> which are <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> in time, and their dependence on the time-dependent vector field. Notably, we show that the Lie group <span><math><mrow><msup><mrow><mo>Diff</mo></mrow><mrow><mi>ω</mi></mrow></msup><mrow><mo>(</mo><mi>M</mi><mo>)</mo></mrow></mrow></math></span> is <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>-regular in the sense that each <span><math><mrow><mrow><mo>[</mo><mi>γ</mi><mo>]</mo></mrow><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup><mrow><mo>(</mo><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow><mo>,</mo><mi>g</mi><mo>)</mo></mrow></mrow></math></span> has an evolution <span><math><mrow><mo>Evol</mo><mrow><mo>(</mo><mrow><mo>[</mo><mi>γ</mi><mo>]</mo></mrow><mo>)</mo></mrow><mo>∈</mo><mo>AC</mo><mrow><mo>(</mo><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow><mo>,</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> which depends smoothly on <span><math><mrow><mo>[</mo><mi>γ</mi><mo>]</mo></mrow></math></span>. As tools for the proof, we develop new results concerning <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>-regularity of infinite-dimensional Lie groups, and new results concerning the continuity and complex analyticity of non-linear mappings on locally convex direct limits.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"252 ","pages":"Article 113690"},"PeriodicalIF":1.3000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lie groups of real analytic diffeomorphisms are L1-regular\",\"authors\":\"Helge Glöckner\",\"doi\":\"10.1016/j.na.2024.113690\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <span><math><mi>M</mi></math></span> be a compact, real analytic manifold and <span><math><mrow><mi>G</mi><mo>≔</mo><msup><mrow><mo>Diff</mo></mrow><mrow><mi>ω</mi></mrow></msup><mrow><mo>(</mo><mi>M</mi><mo>)</mo></mrow></mrow></math></span> be the Lie group of all real-analytic diffeomorphisms <span><math><mrow><mi>γ</mi><mo>:</mo><mi>M</mi><mo>→</mo><mi>M</mi></mrow></math></span>, which is modelled on the locally convex space <span><math><mrow><mi>g</mi><mo>≔</mo><msup><mrow><mi>Γ</mi></mrow><mrow><mi>ω</mi></mrow></msup><mrow><mo>(</mo><mi>T</mi><mi>M</mi><mo>)</mo></mrow></mrow></math></span> of real-analytic vector fields on <span><math><mi>M</mi></math></span>. Let <span><math><mrow><mo>AC</mo><mrow><mo>(</mo><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow><mo>,</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> be the Lie group of all absolutely continuous functions <span><math><mrow><mi>η</mi><mo>:</mo><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow><mo>→</mo><mi>G</mi></mrow></math></span>. We study flows of time-dependent real-analytic vector fields on <span><math><mi>M</mi></math></span> which are <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> in time, and their dependence on the time-dependent vector field. Notably, we show that the Lie group <span><math><mrow><msup><mrow><mo>Diff</mo></mrow><mrow><mi>ω</mi></mrow></msup><mrow><mo>(</mo><mi>M</mi><mo>)</mo></mrow></mrow></math></span> is <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>-regular in the sense that each <span><math><mrow><mrow><mo>[</mo><mi>γ</mi><mo>]</mo></mrow><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup><mrow><mo>(</mo><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow><mo>,</mo><mi>g</mi><mo>)</mo></mrow></mrow></math></span> has an evolution <span><math><mrow><mo>Evol</mo><mrow><mo>(</mo><mrow><mo>[</mo><mi>γ</mi><mo>]</mo></mrow><mo>)</mo></mrow><mo>∈</mo><mo>AC</mo><mrow><mo>(</mo><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow><mo>,</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> which depends smoothly on <span><math><mrow><mo>[</mo><mi>γ</mi><mo>]</mo></mrow></math></span>. As tools for the proof, we develop new results concerning <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>-regularity of infinite-dimensional Lie groups, and new results concerning the continuity and complex analyticity of non-linear mappings on locally convex direct limits.</div></div>\",\"PeriodicalId\":49749,\"journal\":{\"name\":\"Nonlinear Analysis-Theory Methods & Applications\",\"volume\":\"252 \",\"pages\":\"Article 113690\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Theory Methods & Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0362546X24002098\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Theory Methods & Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X24002098","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
让 M 是一个紧凑的实解析流形,G≔Diffω(M) 是所有实解析差分变形 γ:M→M 的李群,它以 M 上实解析向量场的局部凸空间 g≔ω(TM)为模型。让 AC([0,1],G) 是所有绝对连续函数 η 的李群:[0,1]→G。我们研究 M 上时间上为 L1 的依赖时间的实解析向量场流及其对依赖时间的向量场的依赖性。值得注意的是,我们证明了李群 Diffω(M)是 L1-regular 的,即每个 [γ]∈L1([0,1],g) 都有一个平滑依赖于 [γ] 的演化 Evol([γ])∈AC([0,1],G)。作为证明的工具,我们发展了关于无穷维李群 L1 规则性的新结果,以及关于局部凸直接极限上非线性映射的连续性和复解析性的新结果。
Lie groups of real analytic diffeomorphisms are L1-regular
Let be a compact, real analytic manifold and be the Lie group of all real-analytic diffeomorphisms , which is modelled on the locally convex space of real-analytic vector fields on . Let be the Lie group of all absolutely continuous functions . We study flows of time-dependent real-analytic vector fields on which are in time, and their dependence on the time-dependent vector field. Notably, we show that the Lie group is -regular in the sense that each has an evolution which depends smoothly on . As tools for the proof, we develop new results concerning -regularity of infinite-dimensional Lie groups, and new results concerning the continuity and complex analyticity of non-linear mappings on locally convex direct limits.
期刊介绍:
Nonlinear Analysis focuses on papers that address significant problems in Nonlinear Analysis that have a sustainable and important impact on the development of new directions in the theory as well as potential applications. Review articles on important topics in Nonlinear Analysis are welcome as well. In particular, only papers within the areas of specialization of the Editorial Board Members will be considered. Authors are encouraged to check the areas of expertise of the Editorial Board in order to decide whether or not their papers are appropriate for this journal. The journal aims to apply very high standards in accepting papers for publication.