融合生成式对抗网络和非负张量分解用于抑郁 fMRI 数据分析

IF 7.4 1区 管理学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Fengqin Wang , Hengjin Ke , Yunbo Tang
{"title":"融合生成式对抗网络和非负张量分解用于抑郁 fMRI 数据分析","authors":"Fengqin Wang ,&nbsp;Hengjin Ke ,&nbsp;Yunbo Tang","doi":"10.1016/j.ipm.2024.103961","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective:</h3><div>This study introduces a novel approach, F-GAN-NTD, which integrates Generative Adversarial Networks (GANs) with Non-negative Tensor Decomposition (NTD) theory to enhance the analysis of functional Magnetic Resonance Imaging (fMRI) data related to depression.</div></div><div><h3>Methods:</h3><div>F-GAN-NTD is applied to extract nonlinear non-negative factors from multidimensional fMRI tensor data, utilizing Deep-NTD technology to generate factor matrices that capture latent structures and dynamic features. A multi-view neural network architecture processes these factor matrices from all modalities simultaneously, enabling comprehensive pattern discrimination between depression patients and healthy controls. The method is tested on the Closed Eyes Depression fMRI (CEDF) and Strategic Research Program for Brain Sciences (SRPBS) datasets.</div></div><div><h3>Results:</h3><div>The F-GAN-NTD method demonstrates significant improvements in fMRI data classification, outperforming traditional approaches. It also effectively restores incomplete fMRI tensor data and reveals abnormal brain network connections, offering insights into the pathophysiological mechanisms of depression.</div></div><div><h3>Conclusions:</h3><div>F-GAN-NTD enhances the extraction of meaningful features from fMRI data, improving classification performance and providing a deeper understanding of depression-related brain abnormalities. The integration across modalities contributes to a more comprehensive analysis of depression.</div></div>","PeriodicalId":50365,"journal":{"name":"Information Processing & Management","volume":"62 2","pages":"Article 103961"},"PeriodicalIF":7.4000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fusion of generative adversarial networks and non-negative tensor decomposition for depression fMRI data analysis\",\"authors\":\"Fengqin Wang ,&nbsp;Hengjin Ke ,&nbsp;Yunbo Tang\",\"doi\":\"10.1016/j.ipm.2024.103961\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Objective:</h3><div>This study introduces a novel approach, F-GAN-NTD, which integrates Generative Adversarial Networks (GANs) with Non-negative Tensor Decomposition (NTD) theory to enhance the analysis of functional Magnetic Resonance Imaging (fMRI) data related to depression.</div></div><div><h3>Methods:</h3><div>F-GAN-NTD is applied to extract nonlinear non-negative factors from multidimensional fMRI tensor data, utilizing Deep-NTD technology to generate factor matrices that capture latent structures and dynamic features. A multi-view neural network architecture processes these factor matrices from all modalities simultaneously, enabling comprehensive pattern discrimination between depression patients and healthy controls. The method is tested on the Closed Eyes Depression fMRI (CEDF) and Strategic Research Program for Brain Sciences (SRPBS) datasets.</div></div><div><h3>Results:</h3><div>The F-GAN-NTD method demonstrates significant improvements in fMRI data classification, outperforming traditional approaches. It also effectively restores incomplete fMRI tensor data and reveals abnormal brain network connections, offering insights into the pathophysiological mechanisms of depression.</div></div><div><h3>Conclusions:</h3><div>F-GAN-NTD enhances the extraction of meaningful features from fMRI data, improving classification performance and providing a deeper understanding of depression-related brain abnormalities. The integration across modalities contributes to a more comprehensive analysis of depression.</div></div>\",\"PeriodicalId\":50365,\"journal\":{\"name\":\"Information Processing & Management\",\"volume\":\"62 2\",\"pages\":\"Article 103961\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2024-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Processing & Management\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0306457324003200\",\"RegionNum\":1,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Processing & Management","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306457324003200","RegionNum":1,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

方法:F-GAN-NTD应用于从多维fMRI张量数据中提取非线性非负因子,利用Deep-NTD技术生成能捕捉潜在结构和动态特征的因子矩阵。多视角神经网络架构可同时处理来自所有模式的这些因子矩阵,从而在抑郁症患者和健康对照组之间实现全面的模式识别。该方法在闭眼抑郁 fMRI(CEDF)和脑科学战略研究计划(SRPBS)数据集上进行了测试。结果:F-GAN-NTD 方法在 fMRI 数据分类方面有显著改进,优于传统方法。结论:F-GAN-NTD 增强了从 fMRI 数据中提取有意义特征的能力,提高了分类性能,加深了对抑郁症相关脑部异常的理解。跨模式的整合有助于对抑郁症进行更全面的分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fusion of generative adversarial networks and non-negative tensor decomposition for depression fMRI data analysis

Objective:

This study introduces a novel approach, F-GAN-NTD, which integrates Generative Adversarial Networks (GANs) with Non-negative Tensor Decomposition (NTD) theory to enhance the analysis of functional Magnetic Resonance Imaging (fMRI) data related to depression.

Methods:

F-GAN-NTD is applied to extract nonlinear non-negative factors from multidimensional fMRI tensor data, utilizing Deep-NTD technology to generate factor matrices that capture latent structures and dynamic features. A multi-view neural network architecture processes these factor matrices from all modalities simultaneously, enabling comprehensive pattern discrimination between depression patients and healthy controls. The method is tested on the Closed Eyes Depression fMRI (CEDF) and Strategic Research Program for Brain Sciences (SRPBS) datasets.

Results:

The F-GAN-NTD method demonstrates significant improvements in fMRI data classification, outperforming traditional approaches. It also effectively restores incomplete fMRI tensor data and reveals abnormal brain network connections, offering insights into the pathophysiological mechanisms of depression.

Conclusions:

F-GAN-NTD enhances the extraction of meaningful features from fMRI data, improving classification performance and providing a deeper understanding of depression-related brain abnormalities. The integration across modalities contributes to a more comprehensive analysis of depression.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Information Processing & Management
Information Processing & Management 工程技术-计算机:信息系统
CiteScore
17.00
自引率
11.60%
发文量
276
审稿时长
39 days
期刊介绍: Information Processing and Management is dedicated to publishing cutting-edge original research at the convergence of computing and information science. Our scope encompasses theory, methods, and applications across various domains, including advertising, business, health, information science, information technology marketing, and social computing. We aim to cater to the interests of both primary researchers and practitioners by offering an effective platform for the timely dissemination of advanced and topical issues in this interdisciplinary field. The journal places particular emphasis on original research articles, research survey articles, research method articles, and articles addressing critical applications of research. Join us in advancing knowledge and innovation at the intersection of computing and information science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信