超二次函数及其通过区间微积分在信息论中的应用

IF 5.3 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Saad Ihsan Butt, Dawood Khan
{"title":"超二次函数及其通过区间微积分在信息论中的应用","authors":"Saad Ihsan Butt,&nbsp;Dawood Khan","doi":"10.1016/j.chaos.2024.115748","DOIUrl":null,"url":null,"abstract":"<div><div>The goal of this study is to introduce a new class of superquadraticity, which is known as superquadratic interval valued function (superquadratic I-V-F) and establish its properties via order relations of intervals. By utilizing the definitions and properties of superquadratic I-V-F, we come up with new integral inequalities such that Jensen’s, converse Jensen’s, Mercer Jensen’s and Hermite–Hadamard types. In addition to this, we provide a fractional version of Hermite–Hadamard’s type inequalities for superquadratic I-V-Fs. The findings are validated by specific numerical computations and graphical illustrations that include a certain number of relevant examples. We also offer the applications of the established results in information theory such that we determine the novel estimates for Shannon’s and relative entropies.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"190 ","pages":"Article 115748"},"PeriodicalIF":5.3000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Superquadratic function and its applications in information theory via interval calculus\",\"authors\":\"Saad Ihsan Butt,&nbsp;Dawood Khan\",\"doi\":\"10.1016/j.chaos.2024.115748\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The goal of this study is to introduce a new class of superquadraticity, which is known as superquadratic interval valued function (superquadratic I-V-F) and establish its properties via order relations of intervals. By utilizing the definitions and properties of superquadratic I-V-F, we come up with new integral inequalities such that Jensen’s, converse Jensen’s, Mercer Jensen’s and Hermite–Hadamard types. In addition to this, we provide a fractional version of Hermite–Hadamard’s type inequalities for superquadratic I-V-Fs. The findings are validated by specific numerical computations and graphical illustrations that include a certain number of relevant examples. We also offer the applications of the established results in information theory such that we determine the novel estimates for Shannon’s and relative entropies.</div></div>\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":\"190 \",\"pages\":\"Article 115748\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960077924013006\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077924013006","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本研究的目的是引入一类新的超二次函数,即超二次区间值函数(超二次 I-V-F),并通过区间的阶次关系建立其性质。通过利用超二次区间值函数的定义和性质,我们提出了新的积分不等式,如詹森不等式、反向詹森不等式、梅塞尔詹森不等式和赫米特-哈达马德不等式。此外,我们还提供了超二次 I-V-F 的分数版 Hermite-Hadamard 型不等式。我们通过具体的数值计算和图解(包括一定数量的相关示例)验证了这些发现。我们还提供了既定结果在信息论中的应用,如确定香农熵和相对熵的新估计值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Superquadratic function and its applications in information theory via interval calculus
The goal of this study is to introduce a new class of superquadraticity, which is known as superquadratic interval valued function (superquadratic I-V-F) and establish its properties via order relations of intervals. By utilizing the definitions and properties of superquadratic I-V-F, we come up with new integral inequalities such that Jensen’s, converse Jensen’s, Mercer Jensen’s and Hermite–Hadamard types. In addition to this, we provide a fractional version of Hermite–Hadamard’s type inequalities for superquadratic I-V-Fs. The findings are validated by specific numerical computations and graphical illustrations that include a certain number of relevant examples. We also offer the applications of the established results in information theory such that we determine the novel estimates for Shannon’s and relative entropies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信