异质库诺-伯特兰双头垄断博弈模型中的分岔和混沌控制

IF 5.3 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Rizwan Ahmed , M. Zubair Akbar Qureshi , Muhammad Abbas , Nida Mumtaz
{"title":"异质库诺-伯特兰双头垄断博弈模型中的分岔和混沌控制","authors":"Rizwan Ahmed ,&nbsp;M. Zubair Akbar Qureshi ,&nbsp;Muhammad Abbas ,&nbsp;Nida Mumtaz","doi":"10.1016/j.chaos.2024.115757","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, we investigate a Cournot-Bertrand duopoly model with heterogeneous players, where the first player uses bounded rationality and the second player is naive. We examine the existence and stability of all fixed points in the model and use center manifold and bifurcation theory to analyze the occurrence and direction of period-doubling and Neimark-Sacker bifurcations at the positive fixed point. To control bifurcation and chaos, feedback control and hybrid control methods are applied. Numerical examples confirm our theoretical results and reveal the model’s complex dynamics. Notably, we show that increasing the speed adjustment parameter <span><math><mi>α</mi></math></span> in the first player’s bounded rationality mechanism can drive the system from stable equilibrium through periodic oscillations to chaos, highlighting the parameter’s critical role in market complexity and instability.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"190 ","pages":"Article 115757"},"PeriodicalIF":5.3000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bifurcation and chaos control in a heterogeneous Cournot-Bertrand duopoly game model\",\"authors\":\"Rizwan Ahmed ,&nbsp;M. Zubair Akbar Qureshi ,&nbsp;Muhammad Abbas ,&nbsp;Nida Mumtaz\",\"doi\":\"10.1016/j.chaos.2024.115757\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this study, we investigate a Cournot-Bertrand duopoly model with heterogeneous players, where the first player uses bounded rationality and the second player is naive. We examine the existence and stability of all fixed points in the model and use center manifold and bifurcation theory to analyze the occurrence and direction of period-doubling and Neimark-Sacker bifurcations at the positive fixed point. To control bifurcation and chaos, feedback control and hybrid control methods are applied. Numerical examples confirm our theoretical results and reveal the model’s complex dynamics. Notably, we show that increasing the speed adjustment parameter <span><math><mi>α</mi></math></span> in the first player’s bounded rationality mechanism can drive the system from stable equilibrium through periodic oscillations to chaos, highlighting the parameter’s critical role in market complexity and instability.</div></div>\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":\"190 \",\"pages\":\"Article 115757\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960077924013092\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077924013092","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,我们研究了一个具有异质参与者的库诺-贝特朗双头垄断模型,其中第一个参与者使用有界理性,第二个参与者是天真的。我们研究了模型中所有固定点的存在性和稳定性,并利用中心流形和分岔理论分析了正固定点处周期加倍和 Neimark-Sacker 分岔的发生和方向。为了控制分岔和混沌,我们采用了反馈控制和混合控制方法。数值实例证实了我们的理论结果,并揭示了模型的复杂动态。值得注意的是,我们的研究表明,增加第一玩家有界理性机制中的速度调节参数α,可以使系统从稳定平衡经过周期性振荡进入混沌,突出了该参数在市场复杂性和不稳定性中的关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bifurcation and chaos control in a heterogeneous Cournot-Bertrand duopoly game model
In this study, we investigate a Cournot-Bertrand duopoly model with heterogeneous players, where the first player uses bounded rationality and the second player is naive. We examine the existence and stability of all fixed points in the model and use center manifold and bifurcation theory to analyze the occurrence and direction of period-doubling and Neimark-Sacker bifurcations at the positive fixed point. To control bifurcation and chaos, feedback control and hybrid control methods are applied. Numerical examples confirm our theoretical results and reveal the model’s complex dynamics. Notably, we show that increasing the speed adjustment parameter α in the first player’s bounded rationality mechanism can drive the system from stable equilibrium through periodic oscillations to chaos, highlighting the parameter’s critical role in market complexity and instability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信