Weimin Chen , Yong Han , Muhammad Awais Ashraf , Junhan Liu , Mu Zhang , Feng Su , Zhiguo Huang , Kelvin K.L. Wong
{"title":"基于补丁的深度学习磁共振成像分割模型,用于提高脊柱肿瘤的检查效率和临床检查效果","authors":"Weimin Chen , Yong Han , Muhammad Awais Ashraf , Junhan Liu , Mu Zhang , Feng Su , Zhiguo Huang , Kelvin K.L. Wong","doi":"10.1016/j.jbo.2024.100649","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and objective</h3><div>Magnetic resonance imaging (MRI) plays a vital role in diagnosing spinal diseases, including different types of spinal tumors. However, conventional segmentation techniques are often labor-intensive and susceptible to variability. This study aims to propose a full-automatic segmentation method for spine MRI images, utilizing a convolutional-deconvolution neural network and patch-based deep learning. The objective is to improve segmentation efficiency, meeting clinical needs for accurate diagnoses and treatment planning.</div></div><div><h3>Methods</h3><div>The methodology involved the utilization of a convolutional neural network to automatically extract deep learning features from spine data. This allowed for the effective representation of anatomical structures. The network was trained to learn discriminative features necessary for accurate segmentation of the spine MRI data. Furthermore, a patch extraction (PE) based deep neural network was developed using a convolutional neural network to restore the feature maps to their original image size. To improve training efficiency, a combination of pre-training and an enhanced stochastic gradient descent method was utilized.</div></div><div><h3>Results</h3><div>The experimental results highlight the effectiveness of the proposed method for spine image segmentation using Gadolinium-enhanced T1 MRI. This approach not only delivers high accuracy but also offers real-time performance. The innovative model attained impressive metrics, achieving 90.6% precision, 91.1% recall, 93.2% accuracy, 91.3% F1-score, 83.8% Intersection over Union (IoU), and 91.1% Dice Coefficient (DC). These results indicate that the proposed method can accurately segment spine tumors CT images, addressing the limitations of traditional segmentation algorithms.</div></div><div><h3>Conclusion</h3><div>In conclusion, this study introduces a fully automated segmentation method for spine MRI images utilizing a convolutional neural network, enhanced by the application of the PE-module. By utilizing a patch extraction based neural network (PENN) deep learning techniques, the proposed method effectively addresses the deficiencies of traditional algorithms and achieves accurate and real-time spine MRI image segmentation.</div></div>","PeriodicalId":48806,"journal":{"name":"Journal of Bone Oncology","volume":"49 ","pages":"Article 100649"},"PeriodicalIF":3.4000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A patch-based deep learning MRI segmentation model for improving efficiency and clinical examination of the spinal tumor\",\"authors\":\"Weimin Chen , Yong Han , Muhammad Awais Ashraf , Junhan Liu , Mu Zhang , Feng Su , Zhiguo Huang , Kelvin K.L. Wong\",\"doi\":\"10.1016/j.jbo.2024.100649\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background and objective</h3><div>Magnetic resonance imaging (MRI) plays a vital role in diagnosing spinal diseases, including different types of spinal tumors. However, conventional segmentation techniques are often labor-intensive and susceptible to variability. This study aims to propose a full-automatic segmentation method for spine MRI images, utilizing a convolutional-deconvolution neural network and patch-based deep learning. The objective is to improve segmentation efficiency, meeting clinical needs for accurate diagnoses and treatment planning.</div></div><div><h3>Methods</h3><div>The methodology involved the utilization of a convolutional neural network to automatically extract deep learning features from spine data. This allowed for the effective representation of anatomical structures. The network was trained to learn discriminative features necessary for accurate segmentation of the spine MRI data. Furthermore, a patch extraction (PE) based deep neural network was developed using a convolutional neural network to restore the feature maps to their original image size. To improve training efficiency, a combination of pre-training and an enhanced stochastic gradient descent method was utilized.</div></div><div><h3>Results</h3><div>The experimental results highlight the effectiveness of the proposed method for spine image segmentation using Gadolinium-enhanced T1 MRI. This approach not only delivers high accuracy but also offers real-time performance. The innovative model attained impressive metrics, achieving 90.6% precision, 91.1% recall, 93.2% accuracy, 91.3% F1-score, 83.8% Intersection over Union (IoU), and 91.1% Dice Coefficient (DC). These results indicate that the proposed method can accurately segment spine tumors CT images, addressing the limitations of traditional segmentation algorithms.</div></div><div><h3>Conclusion</h3><div>In conclusion, this study introduces a fully automated segmentation method for spine MRI images utilizing a convolutional neural network, enhanced by the application of the PE-module. By utilizing a patch extraction based neural network (PENN) deep learning techniques, the proposed method effectively addresses the deficiencies of traditional algorithms and achieves accurate and real-time spine MRI image segmentation.</div></div>\",\"PeriodicalId\":48806,\"journal\":{\"name\":\"Journal of Bone Oncology\",\"volume\":\"49 \",\"pages\":\"Article 100649\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Bone Oncology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2212137424001295\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bone Oncology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212137424001295","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
A patch-based deep learning MRI segmentation model for improving efficiency and clinical examination of the spinal tumor
Background and objective
Magnetic resonance imaging (MRI) plays a vital role in diagnosing spinal diseases, including different types of spinal tumors. However, conventional segmentation techniques are often labor-intensive and susceptible to variability. This study aims to propose a full-automatic segmentation method for spine MRI images, utilizing a convolutional-deconvolution neural network and patch-based deep learning. The objective is to improve segmentation efficiency, meeting clinical needs for accurate diagnoses and treatment planning.
Methods
The methodology involved the utilization of a convolutional neural network to automatically extract deep learning features from spine data. This allowed for the effective representation of anatomical structures. The network was trained to learn discriminative features necessary for accurate segmentation of the spine MRI data. Furthermore, a patch extraction (PE) based deep neural network was developed using a convolutional neural network to restore the feature maps to their original image size. To improve training efficiency, a combination of pre-training and an enhanced stochastic gradient descent method was utilized.
Results
The experimental results highlight the effectiveness of the proposed method for spine image segmentation using Gadolinium-enhanced T1 MRI. This approach not only delivers high accuracy but also offers real-time performance. The innovative model attained impressive metrics, achieving 90.6% precision, 91.1% recall, 93.2% accuracy, 91.3% F1-score, 83.8% Intersection over Union (IoU), and 91.1% Dice Coefficient (DC). These results indicate that the proposed method can accurately segment spine tumors CT images, addressing the limitations of traditional segmentation algorithms.
Conclusion
In conclusion, this study introduces a fully automated segmentation method for spine MRI images utilizing a convolutional neural network, enhanced by the application of the PE-module. By utilizing a patch extraction based neural network (PENN) deep learning techniques, the proposed method effectively addresses the deficiencies of traditional algorithms and achieves accurate and real-time spine MRI image segmentation.
期刊介绍:
The Journal of Bone Oncology is a peer-reviewed international journal aimed at presenting basic, translational and clinical high-quality research related to bone and cancer.
As the first journal dedicated to cancer induced bone diseases, JBO welcomes original research articles, review articles, editorials and opinion pieces. Case reports will only be considered in exceptional circumstances and only when accompanied by a comprehensive review of the subject.
The areas covered by the journal include:
Bone metastases (pathophysiology, epidemiology, diagnostics, clinical features, prevention, treatment)
Preclinical models of metastasis
Bone microenvironment in cancer (stem cell, bone cell and cancer interactions)
Bone targeted therapy (pharmacology, therapeutic targets, drug development, clinical trials, side-effects, outcome research, health economics)
Cancer treatment induced bone loss (epidemiology, pathophysiology, prevention and management)
Bone imaging (clinical and animal, skeletal interventional radiology)
Bone biomarkers (clinical and translational applications)
Radiotherapy and radio-isotopes
Skeletal complications
Bone pain (mechanisms and management)
Orthopaedic cancer surgery
Primary bone tumours
Clinical guidelines
Multidisciplinary care
Keywords: bisphosphonate, bone, breast cancer, cancer, CTIBL, denosumab, metastasis, myeloma, osteoblast, osteoclast, osteooncology, osteo-oncology, prostate cancer, skeleton, tumour.