R.T. Sweet , C.P. Massey , J.A. Hirschhorn , S.B. Bell , K.A. Kane
{"title":"锻造铁铬铝合金(C26M)包层在模拟失冷事故条件下的行为和爆裂","authors":"R.T. Sweet , C.P. Massey , J.A. Hirschhorn , S.B. Bell , K.A. Kane","doi":"10.1016/j.nucengdes.2024.113712","DOIUrl":null,"url":null,"abstract":"<div><div>Cladding burst experiments for FeCrAl cladding were performed in the Severe Accident Test Station facility at Oak Ridge National Laboratory. These experiments were simulated using the BISON fuel performance code to better understand the cladding plastic behavior and failure under simulated loss-of-coolant accident conditions. 3D cladding surface boundary conditions were generated using composite axial and azimuthal profiles from experiment thermocouple data. To improve the simulation analysis capabilities in BISON for cladding burst behavior, new thermal creep, plasticity, and failure stress models specific to C26M, a wrought FeCrAl alloy, were developed and implemented.</div><div>Initial cladding burst results indicated a general underprediction in the failure temperature of the six cladding burst simulations versus the observed failure temperatures. Close investigation of the experiment timing versus the underlying tensile test data revealed that, compared with the tensile specimens, the cladding tubes did not experience the same long holding time at high temperatures. New tensile tests were performed at high temperatures using a temperature ramp similar to the simulated loss-of-coolant accident experiments. These new tensile curves showed an approximately 80% increase in the ultimate tensile strength of the C26M alloy, indicating that a holding time of 10 min at 700 °C and 800 °C allows annealing to change the material microstructure.</div><div>Using the updated tensile properties, the burst temperatures and stresses from the simulations showed remarkable agreement with the experimental results. This study was then extended by varying the initial pressure to highlight the burst temperature difference between standard Zircaloy-4 and C26M cladding under equivalent conditions. The results show that C26M has a burst temperature that is approximately 70–130 K greater than that of Zircaloy-4.</div><div>These modeling predictions can be further improved by collecting high-temperature tensile data for C26M beyond the temperature ranges used in this work.</div></div>","PeriodicalId":19170,"journal":{"name":"Nuclear Engineering and Design","volume":"431 ","pages":"Article 113712"},"PeriodicalIF":1.9000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wrought FeCrAl alloy (C26M) cladding behavior and burst under simulated loss-of-coolant accident conditions\",\"authors\":\"R.T. Sweet , C.P. Massey , J.A. Hirschhorn , S.B. Bell , K.A. Kane\",\"doi\":\"10.1016/j.nucengdes.2024.113712\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Cladding burst experiments for FeCrAl cladding were performed in the Severe Accident Test Station facility at Oak Ridge National Laboratory. These experiments were simulated using the BISON fuel performance code to better understand the cladding plastic behavior and failure under simulated loss-of-coolant accident conditions. 3D cladding surface boundary conditions were generated using composite axial and azimuthal profiles from experiment thermocouple data. To improve the simulation analysis capabilities in BISON for cladding burst behavior, new thermal creep, plasticity, and failure stress models specific to C26M, a wrought FeCrAl alloy, were developed and implemented.</div><div>Initial cladding burst results indicated a general underprediction in the failure temperature of the six cladding burst simulations versus the observed failure temperatures. Close investigation of the experiment timing versus the underlying tensile test data revealed that, compared with the tensile specimens, the cladding tubes did not experience the same long holding time at high temperatures. New tensile tests were performed at high temperatures using a temperature ramp similar to the simulated loss-of-coolant accident experiments. These new tensile curves showed an approximately 80% increase in the ultimate tensile strength of the C26M alloy, indicating that a holding time of 10 min at 700 °C and 800 °C allows annealing to change the material microstructure.</div><div>Using the updated tensile properties, the burst temperatures and stresses from the simulations showed remarkable agreement with the experimental results. This study was then extended by varying the initial pressure to highlight the burst temperature difference between standard Zircaloy-4 and C26M cladding under equivalent conditions. The results show that C26M has a burst temperature that is approximately 70–130 K greater than that of Zircaloy-4.</div><div>These modeling predictions can be further improved by collecting high-temperature tensile data for C26M beyond the temperature ranges used in this work.</div></div>\",\"PeriodicalId\":19170,\"journal\":{\"name\":\"Nuclear Engineering and Design\",\"volume\":\"431 \",\"pages\":\"Article 113712\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear Engineering and Design\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0029549324008124\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Engineering and Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0029549324008124","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Wrought FeCrAl alloy (C26M) cladding behavior and burst under simulated loss-of-coolant accident conditions
Cladding burst experiments for FeCrAl cladding were performed in the Severe Accident Test Station facility at Oak Ridge National Laboratory. These experiments were simulated using the BISON fuel performance code to better understand the cladding plastic behavior and failure under simulated loss-of-coolant accident conditions. 3D cladding surface boundary conditions were generated using composite axial and azimuthal profiles from experiment thermocouple data. To improve the simulation analysis capabilities in BISON for cladding burst behavior, new thermal creep, plasticity, and failure stress models specific to C26M, a wrought FeCrAl alloy, were developed and implemented.
Initial cladding burst results indicated a general underprediction in the failure temperature of the six cladding burst simulations versus the observed failure temperatures. Close investigation of the experiment timing versus the underlying tensile test data revealed that, compared with the tensile specimens, the cladding tubes did not experience the same long holding time at high temperatures. New tensile tests were performed at high temperatures using a temperature ramp similar to the simulated loss-of-coolant accident experiments. These new tensile curves showed an approximately 80% increase in the ultimate tensile strength of the C26M alloy, indicating that a holding time of 10 min at 700 °C and 800 °C allows annealing to change the material microstructure.
Using the updated tensile properties, the burst temperatures and stresses from the simulations showed remarkable agreement with the experimental results. This study was then extended by varying the initial pressure to highlight the burst temperature difference between standard Zircaloy-4 and C26M cladding under equivalent conditions. The results show that C26M has a burst temperature that is approximately 70–130 K greater than that of Zircaloy-4.
These modeling predictions can be further improved by collecting high-temperature tensile data for C26M beyond the temperature ranges used in this work.
期刊介绍:
Nuclear Engineering and Design covers the wide range of disciplines involved in the engineering, design, safety and construction of nuclear fission reactors. The Editors welcome papers both on applied and innovative aspects and developments in nuclear science and technology.
Fundamentals of Reactor Design include:
• Thermal-Hydraulics and Core Physics
• Safety Analysis, Risk Assessment (PSA)
• Structural and Mechanical Engineering
• Materials Science
• Fuel Behavior and Design
• Structural Plant Design
• Engineering of Reactor Components
• Experiments
Aspects beyond fundamentals of Reactor Design covered:
• Accident Mitigation Measures
• Reactor Control Systems
• Licensing Issues
• Safeguard Engineering
• Economy of Plants
• Reprocessing / Waste Disposal
• Applications of Nuclear Energy
• Maintenance
• Decommissioning
Papers on new reactor ideas and developments (Generation IV reactors) such as inherently safe modular HTRs, High Performance LWRs/HWRs and LMFBs/GFR will be considered; Actinide Burners, Accelerator Driven Systems, Energy Amplifiers and other special designs of power and research reactors and their applications are also encouraged.