{"title":"估计和测试矩条件模型中的平稳结构变化","authors":"Haiqi Li , Jin Zhou , Yongmiao Hong","doi":"10.1016/j.jeconom.2024.105896","DOIUrl":null,"url":null,"abstract":"<div><div>Numerous studies have been devoted to estimating and testing for moment condition models. Most existing studies assume that structural parameters are either fixed or change abruptly over time. This study considers estimating and testing for smooth structural changes in moment condition models where the data-generating process is locally stationary. A novel local generalized method of moments estimator and its boundary-corrected counterpart are proposed to estimate the smoothly changing parameters. Consistency and asymptotic normality are established, and an optimal weighting matrix and its consistent estimator are obtained. Moreover, we propose a consistent test to detect both smooth changes and abrupt breaks, as well as a consistent test for a parametric functional form of time-varying parameters. The tests are asymptotically pivotal and do not require prior information about the alternatives. Monte Carlo simulation studies show that the proposed estimators and tests have superior finite-sample performance. In an empirical application, we document the time-varying features of the risk aversion parameter in an asset pricing model, indicating that investors’ risk aversion is counter-cyclical.</div></div>","PeriodicalId":15629,"journal":{"name":"Journal of Econometrics","volume":"246 1","pages":"Article 105896"},"PeriodicalIF":9.9000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimating and testing for smooth structural changes in moment condition models\",\"authors\":\"Haiqi Li , Jin Zhou , Yongmiao Hong\",\"doi\":\"10.1016/j.jeconom.2024.105896\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Numerous studies have been devoted to estimating and testing for moment condition models. Most existing studies assume that structural parameters are either fixed or change abruptly over time. This study considers estimating and testing for smooth structural changes in moment condition models where the data-generating process is locally stationary. A novel local generalized method of moments estimator and its boundary-corrected counterpart are proposed to estimate the smoothly changing parameters. Consistency and asymptotic normality are established, and an optimal weighting matrix and its consistent estimator are obtained. Moreover, we propose a consistent test to detect both smooth changes and abrupt breaks, as well as a consistent test for a parametric functional form of time-varying parameters. The tests are asymptotically pivotal and do not require prior information about the alternatives. Monte Carlo simulation studies show that the proposed estimators and tests have superior finite-sample performance. In an empirical application, we document the time-varying features of the risk aversion parameter in an asset pricing model, indicating that investors’ risk aversion is counter-cyclical.</div></div>\",\"PeriodicalId\":15629,\"journal\":{\"name\":\"Journal of Econometrics\",\"volume\":\"246 1\",\"pages\":\"Article 105896\"},\"PeriodicalIF\":9.9000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Econometrics\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304407624002471\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Econometrics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304407624002471","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
Estimating and testing for smooth structural changes in moment condition models
Numerous studies have been devoted to estimating and testing for moment condition models. Most existing studies assume that structural parameters are either fixed or change abruptly over time. This study considers estimating and testing for smooth structural changes in moment condition models where the data-generating process is locally stationary. A novel local generalized method of moments estimator and its boundary-corrected counterpart are proposed to estimate the smoothly changing parameters. Consistency and asymptotic normality are established, and an optimal weighting matrix and its consistent estimator are obtained. Moreover, we propose a consistent test to detect both smooth changes and abrupt breaks, as well as a consistent test for a parametric functional form of time-varying parameters. The tests are asymptotically pivotal and do not require prior information about the alternatives. Monte Carlo simulation studies show that the proposed estimators and tests have superior finite-sample performance. In an empirical application, we document the time-varying features of the risk aversion parameter in an asset pricing model, indicating that investors’ risk aversion is counter-cyclical.
期刊介绍:
The Journal of Econometrics serves as an outlet for important, high quality, new research in both theoretical and applied econometrics. The scope of the Journal includes papers dealing with identification, estimation, testing, decision, and prediction issues encountered in economic research. Classical Bayesian statistics, and machine learning methods, are decidedly within the range of the Journal''s interests. The Annals of Econometrics is a supplement to the Journal of Econometrics.