具有同类点云辅助功能的点云分割神经网络

IF 4.2 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Jingxin Lin , Kaifan Zhong , Tao Gong , Xianmin Zhang , Nianfeng Wang
{"title":"具有同类点云辅助功能的点云分割神经网络","authors":"Jingxin Lin ,&nbsp;Kaifan Zhong ,&nbsp;Tao Gong ,&nbsp;Xianmin Zhang ,&nbsp;Nianfeng Wang","doi":"10.1016/j.imavis.2024.105331","DOIUrl":null,"url":null,"abstract":"<div><div>This paper proposes neural network architectures for point cloud segmentation, which leverage prior knowledge derived from same-type point clouds. The approach involves concurrent processing of two point clouds: a target point cloud necessitating segmentation and a labeled same-type point cloud. The labeled point cloud provides preliminary labeling information, assisting in segmenting the target point cloud. A feature combination module is proposed to identify and combine corresponding features across the point clouds. The module augments the feature representation of the target cloud and improves its capacity for object discrimination. Experiments on the ShapeNetPart and S3DIS datasets demonstrate that when integrated into classical network architectures, the proposed approach can achieve improved segmentation performance over the corresponding networks, significantly in some of them.</div></div>","PeriodicalId":50374,"journal":{"name":"Image and Vision Computing","volume":"152 ","pages":"Article 105331"},"PeriodicalIF":4.2000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Point cloud segmentation neural network with same-type point cloud assistance\",\"authors\":\"Jingxin Lin ,&nbsp;Kaifan Zhong ,&nbsp;Tao Gong ,&nbsp;Xianmin Zhang ,&nbsp;Nianfeng Wang\",\"doi\":\"10.1016/j.imavis.2024.105331\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper proposes neural network architectures for point cloud segmentation, which leverage prior knowledge derived from same-type point clouds. The approach involves concurrent processing of two point clouds: a target point cloud necessitating segmentation and a labeled same-type point cloud. The labeled point cloud provides preliminary labeling information, assisting in segmenting the target point cloud. A feature combination module is proposed to identify and combine corresponding features across the point clouds. The module augments the feature representation of the target cloud and improves its capacity for object discrimination. Experiments on the ShapeNetPart and S3DIS datasets demonstrate that when integrated into classical network architectures, the proposed approach can achieve improved segmentation performance over the corresponding networks, significantly in some of them.</div></div>\",\"PeriodicalId\":50374,\"journal\":{\"name\":\"Image and Vision Computing\",\"volume\":\"152 \",\"pages\":\"Article 105331\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Image and Vision Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0262885624004360\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Image and Vision Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0262885624004360","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了用于点云分割的神经网络架构,该架构利用了从同类型点云中获得的先验知识。该方法需要同时处理两个点云:一个需要分割的目标点云和一个已标记的同类型点云。标注点云提供初步标注信息,有助于分割目标点云。我们提出了一个特征组合模块,用于识别和组合点云中的相应特征。该模块增强了目标云的特征表示,提高了目标云的物体识别能力。在 ShapeNetPart 和 S3DIS 数据集上进行的实验表明,当将所提出的方法集成到经典网络架构中时,它的分割性能比相应的网络有显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Point cloud segmentation neural network with same-type point cloud assistance
This paper proposes neural network architectures for point cloud segmentation, which leverage prior knowledge derived from same-type point clouds. The approach involves concurrent processing of two point clouds: a target point cloud necessitating segmentation and a labeled same-type point cloud. The labeled point cloud provides preliminary labeling information, assisting in segmenting the target point cloud. A feature combination module is proposed to identify and combine corresponding features across the point clouds. The module augments the feature representation of the target cloud and improves its capacity for object discrimination. Experiments on the ShapeNetPart and S3DIS datasets demonstrate that when integrated into classical network architectures, the proposed approach can achieve improved segmentation performance over the corresponding networks, significantly in some of them.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Image and Vision Computing
Image and Vision Computing 工程技术-工程:电子与电气
CiteScore
8.50
自引率
8.50%
发文量
143
审稿时长
7.8 months
期刊介绍: Image and Vision Computing has as a primary aim the provision of an effective medium of interchange for the results of high quality theoretical and applied research fundamental to all aspects of image interpretation and computer vision. The journal publishes work that proposes new image interpretation and computer vision methodology or addresses the application of such methods to real world scenes. It seeks to strengthen a deeper understanding in the discipline by encouraging the quantitative comparison and performance evaluation of the proposed methodology. The coverage includes: image interpretation, scene modelling, object recognition and tracking, shape analysis, monitoring and surveillance, active vision and robotic systems, SLAM, biologically-inspired computer vision, motion analysis, stereo vision, document image understanding, character and handwritten text recognition, face and gesture recognition, biometrics, vision-based human-computer interaction, human activity and behavior understanding, data fusion from multiple sensor inputs, image databases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信