Juan Eloy Ruiz-Castro , Hugo Alaín Zapata-Ceballos
{"title":"通过 MMAP 建立受多重事件、预防性维护、单元损失和多重休假政策影响的复杂冗余多状态系统的算法模型","authors":"Juan Eloy Ruiz-Castro , Hugo Alaín Zapata-Ceballos","doi":"10.1016/j.matcom.2024.11.005","DOIUrl":null,"url":null,"abstract":"<div><div>A complex multi-state redundant system undergoing preventive maintenance and experiencing multiple events is being considered in a continuous time frame. The online unit is susceptible to various types of failures, both internal and external in nature, with multiple degradation levels present, both internally and externally. Random inspections are continuously monitoring these degradation levels, and if they reach a critical state, the unit is directed to a repair facility for preventive maintenance. The maintenance place is managed by a repairperson, who follows a multiple vacation policy dependent on the operational status of the units. The repairperson is responsible for two primary tasks: corrective repair and preventive maintenance. The time durations within the system follow phase-type distributions, and the model is constructed utilizing Markovian Arrival Processes with marked arrivals. A variety of performance measures, including transient and stationary distributions, are calculated using matrix-analytic methods. This methodology allows for the representation of significant outcomes and the general behavior of the system in a matrix-algorithmic structure. To enhance the model's efficiency, both costs and rewards are incorporated into the analysis. A numerical example is presented to showcase the model's flexibility and effectiveness in real-world applications.</div></div>","PeriodicalId":49856,"journal":{"name":"Mathematics and Computers in Simulation","volume":"230 ","pages":"Pages 165-192"},"PeriodicalIF":4.4000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Algorithmic modelling of a complex redundant multi-state system subject to multiple events, preventive maintenance, loss of units and a multiple vacation policy through a MMAP\",\"authors\":\"Juan Eloy Ruiz-Castro , Hugo Alaín Zapata-Ceballos\",\"doi\":\"10.1016/j.matcom.2024.11.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A complex multi-state redundant system undergoing preventive maintenance and experiencing multiple events is being considered in a continuous time frame. The online unit is susceptible to various types of failures, both internal and external in nature, with multiple degradation levels present, both internally and externally. Random inspections are continuously monitoring these degradation levels, and if they reach a critical state, the unit is directed to a repair facility for preventive maintenance. The maintenance place is managed by a repairperson, who follows a multiple vacation policy dependent on the operational status of the units. The repairperson is responsible for two primary tasks: corrective repair and preventive maintenance. The time durations within the system follow phase-type distributions, and the model is constructed utilizing Markovian Arrival Processes with marked arrivals. A variety of performance measures, including transient and stationary distributions, are calculated using matrix-analytic methods. This methodology allows for the representation of significant outcomes and the general behavior of the system in a matrix-algorithmic structure. To enhance the model's efficiency, both costs and rewards are incorporated into the analysis. A numerical example is presented to showcase the model's flexibility and effectiveness in real-world applications.</div></div>\",\"PeriodicalId\":49856,\"journal\":{\"name\":\"Mathematics and Computers in Simulation\",\"volume\":\"230 \",\"pages\":\"Pages 165-192\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics and Computers in Simulation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378475424004452\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics and Computers in Simulation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378475424004452","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Algorithmic modelling of a complex redundant multi-state system subject to multiple events, preventive maintenance, loss of units and a multiple vacation policy through a MMAP
A complex multi-state redundant system undergoing preventive maintenance and experiencing multiple events is being considered in a continuous time frame. The online unit is susceptible to various types of failures, both internal and external in nature, with multiple degradation levels present, both internally and externally. Random inspections are continuously monitoring these degradation levels, and if they reach a critical state, the unit is directed to a repair facility for preventive maintenance. The maintenance place is managed by a repairperson, who follows a multiple vacation policy dependent on the operational status of the units. The repairperson is responsible for two primary tasks: corrective repair and preventive maintenance. The time durations within the system follow phase-type distributions, and the model is constructed utilizing Markovian Arrival Processes with marked arrivals. A variety of performance measures, including transient and stationary distributions, are calculated using matrix-analytic methods. This methodology allows for the representation of significant outcomes and the general behavior of the system in a matrix-algorithmic structure. To enhance the model's efficiency, both costs and rewards are incorporated into the analysis. A numerical example is presented to showcase the model's flexibility and effectiveness in real-world applications.
期刊介绍:
The aim of the journal is to provide an international forum for the dissemination of up-to-date information in the fields of the mathematics and computers, in particular (but not exclusively) as they apply to the dynamics of systems, their simulation and scientific computation in general. Published material ranges from short, concise research papers to more general tutorial articles.
Mathematics and Computers in Simulation, published monthly, is the official organ of IMACS, the International Association for Mathematics and Computers in Simulation (Formerly AICA). This Association, founded in 1955 and legally incorporated in 1956 is a member of FIACC (the Five International Associations Coordinating Committee), together with IFIP, IFAV, IFORS and IMEKO.
Topics covered by the journal include mathematical tools in:
•The foundations of systems modelling
•Numerical analysis and the development of algorithms for simulation
They also include considerations about computer hardware for simulation and about special software and compilers.
The journal also publishes articles concerned with specific applications of modelling and simulation in science and engineering, with relevant applied mathematics, the general philosophy of systems simulation, and their impact on disciplinary and interdisciplinary research.
The journal includes a Book Review section -- and a "News on IMACS" section that contains a Calendar of future Conferences/Events and other information about the Association.