{"title":"LCRTR-Net:用于铁路运输中轨道波纹的低成本实时识别网络","authors":"Xueyang Tang , Xiaopei Cai , Yuqi Wang , Yue Hou","doi":"10.1016/j.engappai.2024.109708","DOIUrl":null,"url":null,"abstract":"<div><div>Rail corrugation has a significant impact on the safety of high-speed railway operations, making its identification particularly important. Traditional manual inspection methods are infeasible for large-scale identification within limited time frames, while existing methods based on machine vision or axle box acceleration face challenges such as high costs, complex equipment installation and maintenance, as well as difficulties in achieving real-time performance. To address these challenges, this study proposes an innovative low-cost real-time recognition network (LCRTR-Net), which utilizes accelerometers installed on the underside of the train body and combines wavelet packet decomposition with dilated causal convolution in a residual neural network. Specifically, the approach first extracts the latent features of train body acceleration caused by rail corrugation through wavelet packet decomposition and reconstruction. Next, dilated causal convolution is employed to capture the temporal causal relationships and long-term dependencies of these latent features. Finally, the integration of residual connections further enhances the feature extraction performance and computational efficiency of LCRTR-Net. Experimental results demonstrate that LCRTR-Net exhibits significant generalization ability and real-time performance, achieving an average recognition accuracy exceeding 97.0%, with a recognition time of only 0.17 ms per rail corrugation sample, significantly outperforming existing rail corrugation recognition methods. This indicates that LCRTR-Net has broad application potential in practical railway operations. Future research directions will focus on unsupervised or few-shot learning algorithms and multi-sensor integration to further improve recognition accuracy and real-time performance, promoting the practical application of this technology.</div></div>","PeriodicalId":50523,"journal":{"name":"Engineering Applications of Artificial Intelligence","volume":"140 ","pages":"Article 109708"},"PeriodicalIF":7.5000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LCRTR-Net: A low-cost real-time recognition network for rail corrugation in railway transportation\",\"authors\":\"Xueyang Tang , Xiaopei Cai , Yuqi Wang , Yue Hou\",\"doi\":\"10.1016/j.engappai.2024.109708\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Rail corrugation has a significant impact on the safety of high-speed railway operations, making its identification particularly important. Traditional manual inspection methods are infeasible for large-scale identification within limited time frames, while existing methods based on machine vision or axle box acceleration face challenges such as high costs, complex equipment installation and maintenance, as well as difficulties in achieving real-time performance. To address these challenges, this study proposes an innovative low-cost real-time recognition network (LCRTR-Net), which utilizes accelerometers installed on the underside of the train body and combines wavelet packet decomposition with dilated causal convolution in a residual neural network. Specifically, the approach first extracts the latent features of train body acceleration caused by rail corrugation through wavelet packet decomposition and reconstruction. Next, dilated causal convolution is employed to capture the temporal causal relationships and long-term dependencies of these latent features. Finally, the integration of residual connections further enhances the feature extraction performance and computational efficiency of LCRTR-Net. Experimental results demonstrate that LCRTR-Net exhibits significant generalization ability and real-time performance, achieving an average recognition accuracy exceeding 97.0%, with a recognition time of only 0.17 ms per rail corrugation sample, significantly outperforming existing rail corrugation recognition methods. This indicates that LCRTR-Net has broad application potential in practical railway operations. Future research directions will focus on unsupervised or few-shot learning algorithms and multi-sensor integration to further improve recognition accuracy and real-time performance, promoting the practical application of this technology.</div></div>\",\"PeriodicalId\":50523,\"journal\":{\"name\":\"Engineering Applications of Artificial Intelligence\",\"volume\":\"140 \",\"pages\":\"Article 109708\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Applications of Artificial Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0952197624018669\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Applications of Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0952197624018669","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
LCRTR-Net: A low-cost real-time recognition network for rail corrugation in railway transportation
Rail corrugation has a significant impact on the safety of high-speed railway operations, making its identification particularly important. Traditional manual inspection methods are infeasible for large-scale identification within limited time frames, while existing methods based on machine vision or axle box acceleration face challenges such as high costs, complex equipment installation and maintenance, as well as difficulties in achieving real-time performance. To address these challenges, this study proposes an innovative low-cost real-time recognition network (LCRTR-Net), which utilizes accelerometers installed on the underside of the train body and combines wavelet packet decomposition with dilated causal convolution in a residual neural network. Specifically, the approach first extracts the latent features of train body acceleration caused by rail corrugation through wavelet packet decomposition and reconstruction. Next, dilated causal convolution is employed to capture the temporal causal relationships and long-term dependencies of these latent features. Finally, the integration of residual connections further enhances the feature extraction performance and computational efficiency of LCRTR-Net. Experimental results demonstrate that LCRTR-Net exhibits significant generalization ability and real-time performance, achieving an average recognition accuracy exceeding 97.0%, with a recognition time of only 0.17 ms per rail corrugation sample, significantly outperforming existing rail corrugation recognition methods. This indicates that LCRTR-Net has broad application potential in practical railway operations. Future research directions will focus on unsupervised or few-shot learning algorithms and multi-sensor integration to further improve recognition accuracy and real-time performance, promoting the practical application of this technology.
期刊介绍:
Artificial Intelligence (AI) is pivotal in driving the fourth industrial revolution, witnessing remarkable advancements across various machine learning methodologies. AI techniques have become indispensable tools for practicing engineers, enabling them to tackle previously insurmountable challenges. Engineering Applications of Artificial Intelligence serves as a global platform for the swift dissemination of research elucidating the practical application of AI methods across all engineering disciplines. Submitted papers are expected to present novel aspects of AI utilized in real-world engineering applications, validated using publicly available datasets to ensure the replicability of research outcomes. Join us in exploring the transformative potential of AI in engineering.