Lei Lyu , Chen Pang , Qinghan Yang , Kailin Liu , Chong Geng
{"title":"用于术前甲状旁腺分割的双分支特征增强变换器","authors":"Lei Lyu , Chen Pang , Qinghan Yang , Kailin Liu , Chong Geng","doi":"10.1016/j.engappai.2024.109672","DOIUrl":null,"url":null,"abstract":"<div><div>The parathyroid glands are easily injured or accidentally removed during thyroid surgery, causing temporary or even permanent hypocalcemia. Thus, accurate preoperative identification and localization of the parathyroid glands by ultrasound is crucial in protecting the parathyroid glands and preventing parathyroid injury during thyroid surgery. However, there are only a few methods used for highlighting the parathyroid gland in ultrasound images before thyroid surgery. In this study, we propose a Dual-branch feature Reinforcement Transformer Network (DRT-Net) for preoperative parathyroid gland segmentation. DRT-Net incorporates a dual-branch structure, consisting of a devised convolution network (CNN) backbone called Feature Reinforcement subnet (FR-subnet) and a Transformer branch capturing detailed features and context information from the confused ultrasound image. Furthermore, we design a Margin Tracking Attention (MTA) that optimizes the ability of FR-subnet to process margin information by tracking margin pixels of feature map. Finally, we employ a Cross-channel Feature Reinforcement Module (CFRM) to fuse the extracted detailed features from the CNN branch with the global context information from the Transformer branch. We trained and evaluated the DRT-Net on the self-built parathyroid gland segmentation dataset and an open-access Kvasir-SEG dataset. Extensive experiments have been carried out to validate the efficiency of our method.</div></div>","PeriodicalId":50523,"journal":{"name":"Engineering Applications of Artificial Intelligence","volume":"140 ","pages":"Article 109672"},"PeriodicalIF":7.5000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dual-branch feature Reinforcement Transformer for preoperative parathyroid gland segmentation\",\"authors\":\"Lei Lyu , Chen Pang , Qinghan Yang , Kailin Liu , Chong Geng\",\"doi\":\"10.1016/j.engappai.2024.109672\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The parathyroid glands are easily injured or accidentally removed during thyroid surgery, causing temporary or even permanent hypocalcemia. Thus, accurate preoperative identification and localization of the parathyroid glands by ultrasound is crucial in protecting the parathyroid glands and preventing parathyroid injury during thyroid surgery. However, there are only a few methods used for highlighting the parathyroid gland in ultrasound images before thyroid surgery. In this study, we propose a Dual-branch feature Reinforcement Transformer Network (DRT-Net) for preoperative parathyroid gland segmentation. DRT-Net incorporates a dual-branch structure, consisting of a devised convolution network (CNN) backbone called Feature Reinforcement subnet (FR-subnet) and a Transformer branch capturing detailed features and context information from the confused ultrasound image. Furthermore, we design a Margin Tracking Attention (MTA) that optimizes the ability of FR-subnet to process margin information by tracking margin pixels of feature map. Finally, we employ a Cross-channel Feature Reinforcement Module (CFRM) to fuse the extracted detailed features from the CNN branch with the global context information from the Transformer branch. We trained and evaluated the DRT-Net on the self-built parathyroid gland segmentation dataset and an open-access Kvasir-SEG dataset. Extensive experiments have been carried out to validate the efficiency of our method.</div></div>\",\"PeriodicalId\":50523,\"journal\":{\"name\":\"Engineering Applications of Artificial Intelligence\",\"volume\":\"140 \",\"pages\":\"Article 109672\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Applications of Artificial Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S095219762401830X\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Applications of Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S095219762401830X","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Dual-branch feature Reinforcement Transformer for preoperative parathyroid gland segmentation
The parathyroid glands are easily injured or accidentally removed during thyroid surgery, causing temporary or even permanent hypocalcemia. Thus, accurate preoperative identification and localization of the parathyroid glands by ultrasound is crucial in protecting the parathyroid glands and preventing parathyroid injury during thyroid surgery. However, there are only a few methods used for highlighting the parathyroid gland in ultrasound images before thyroid surgery. In this study, we propose a Dual-branch feature Reinforcement Transformer Network (DRT-Net) for preoperative parathyroid gland segmentation. DRT-Net incorporates a dual-branch structure, consisting of a devised convolution network (CNN) backbone called Feature Reinforcement subnet (FR-subnet) and a Transformer branch capturing detailed features and context information from the confused ultrasound image. Furthermore, we design a Margin Tracking Attention (MTA) that optimizes the ability of FR-subnet to process margin information by tracking margin pixels of feature map. Finally, we employ a Cross-channel Feature Reinforcement Module (CFRM) to fuse the extracted detailed features from the CNN branch with the global context information from the Transformer branch. We trained and evaluated the DRT-Net on the self-built parathyroid gland segmentation dataset and an open-access Kvasir-SEG dataset. Extensive experiments have been carried out to validate the efficiency of our method.
期刊介绍:
Artificial Intelligence (AI) is pivotal in driving the fourth industrial revolution, witnessing remarkable advancements across various machine learning methodologies. AI techniques have become indispensable tools for practicing engineers, enabling them to tackle previously insurmountable challenges. Engineering Applications of Artificial Intelligence serves as a global platform for the swift dissemination of research elucidating the practical application of AI methods across all engineering disciplines. Submitted papers are expected to present novel aspects of AI utilized in real-world engineering applications, validated using publicly available datasets to ensure the replicability of research outcomes. Join us in exploring the transformative potential of AI in engineering.