{"title":"基于隐马尔可夫模型的病态步态特征的新型步态质量测量方法","authors":"Abdelghani Halimi , Lorenzo Hermez , Nesma Houmani , Sonia Garcia-Salicetti , Omar Galarraga","doi":"10.1016/j.compbiomed.2024.109368","DOIUrl":null,"url":null,"abstract":"<div><div>This study addresses the characterization of normal gait and pathological deviations caused by neurological diseases. We focus on the angular knee kinematics in the sagittal plane and we propose to exploit Hidden Markov Models to build a statistical model of normal gait. Such model provides a log-likelihood score that quantifies gait quality. Hence allowing to assess deviations of pathological cycles from normal gait. Our approach allows a refined characterization of motor impairments of three different patients’ groups. In particular, it detects the affected lower limb in Hemiparetic patients. Comparatively to the Gait Variable Score and a Dynamic Time Warping-based metric, our results show that our statistical method is more effective for finely quantifying pathological deviations. Finally, we show the potential use of our methodology to assess therapeutic impacts during gait rehabilitation, which represents a promising avenue for improving patient care.</div></div>","PeriodicalId":10578,"journal":{"name":"Computers in biology and medicine","volume":"184 ","pages":"Article 109368"},"PeriodicalIF":7.0000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel gait quality measure for characterizing pathological gait based on Hidden Markov Models\",\"authors\":\"Abdelghani Halimi , Lorenzo Hermez , Nesma Houmani , Sonia Garcia-Salicetti , Omar Galarraga\",\"doi\":\"10.1016/j.compbiomed.2024.109368\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study addresses the characterization of normal gait and pathological deviations caused by neurological diseases. We focus on the angular knee kinematics in the sagittal plane and we propose to exploit Hidden Markov Models to build a statistical model of normal gait. Such model provides a log-likelihood score that quantifies gait quality. Hence allowing to assess deviations of pathological cycles from normal gait. Our approach allows a refined characterization of motor impairments of three different patients’ groups. In particular, it detects the affected lower limb in Hemiparetic patients. Comparatively to the Gait Variable Score and a Dynamic Time Warping-based metric, our results show that our statistical method is more effective for finely quantifying pathological deviations. Finally, we show the potential use of our methodology to assess therapeutic impacts during gait rehabilitation, which represents a promising avenue for improving patient care.</div></div>\",\"PeriodicalId\":10578,\"journal\":{\"name\":\"Computers in biology and medicine\",\"volume\":\"184 \",\"pages\":\"Article 109368\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2024-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers in biology and medicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0010482524014537\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in biology and medicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010482524014537","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
A novel gait quality measure for characterizing pathological gait based on Hidden Markov Models
This study addresses the characterization of normal gait and pathological deviations caused by neurological diseases. We focus on the angular knee kinematics in the sagittal plane and we propose to exploit Hidden Markov Models to build a statistical model of normal gait. Such model provides a log-likelihood score that quantifies gait quality. Hence allowing to assess deviations of pathological cycles from normal gait. Our approach allows a refined characterization of motor impairments of three different patients’ groups. In particular, it detects the affected lower limb in Hemiparetic patients. Comparatively to the Gait Variable Score and a Dynamic Time Warping-based metric, our results show that our statistical method is more effective for finely quantifying pathological deviations. Finally, we show the potential use of our methodology to assess therapeutic impacts during gait rehabilitation, which represents a promising avenue for improving patient care.
期刊介绍:
Computers in Biology and Medicine is an international forum for sharing groundbreaking advancements in the use of computers in bioscience and medicine. This journal serves as a medium for communicating essential research, instruction, ideas, and information regarding the rapidly evolving field of computer applications in these domains. By encouraging the exchange of knowledge, we aim to facilitate progress and innovation in the utilization of computers in biology and medicine.