墨丘利岩浆中硫化物标本的氧富集度-温度-压力-成分模型

IF 4.5 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS
Brendan A. Anzures , Stephen W. Parman , Ralph E. Milliken , Olivier Namur , Camille Cartier , Francis M. McCubbin , Kathleen E. Vander Kaaden , Kelsey Prissel , Kayla Iacovino , Antonio Lanzirotti , Matthew Newville
{"title":"墨丘利岩浆中硫化物标本的氧富集度-温度-压力-成分模型","authors":"Brendan A. Anzures ,&nbsp;Stephen W. Parman ,&nbsp;Ralph E. Milliken ,&nbsp;Olivier Namur ,&nbsp;Camille Cartier ,&nbsp;Francis M. McCubbin ,&nbsp;Kathleen E. Vander Kaaden ,&nbsp;Kelsey Prissel ,&nbsp;Kayla Iacovino ,&nbsp;Antonio Lanzirotti ,&nbsp;Matthew Newville","doi":"10.1016/j.gca.2024.11.012","DOIUrl":null,"url":null,"abstract":"<div><div>The NASA MESSENGER mission revealed that lavas on Mercury are enriched in sulfur (1.5–4 wt%) compared with other terrestrial planets (&lt;0.1 wt%) due to high S solubility in silicate melt under its very low oxygen fugacity (ƒO<sub>2</sub>). However, the speciation of that S remains poorly constrained. In this study, we evaluate the role of pressure, temperature, and melt composition on S solubility and speciation in reduced magmas relevant to Mercury. Sulfur speciation was determined by S K-edge XANES spectra collected in 60 experiments that span a range of pressure (0.1 to 5 GPa), temperature (1225 to 1850 °C), and ƒO<sub>2</sub> (IW-0.8 to IW-8.6). Data were analysed using new relevant XANES standards and XANES spectral unmixing techniques. Stepwise forward regression was used to develop empirical equations for S species (MgS, CaS, and TiS). We found that <em>f</em>O<sub>2</sub>, P/T, and S content in the silicate melt at sulfide saturation (SCSS) exert the main controls on MgS content (wt.%) in the silicate melt, and that <em>f</em>O<sub>2</sub> and MgS content in the silicate melt exert the main controls on SCSS.</div><div><span><math><mrow><mfenced><mrow><msub><mrow><mi>MgS</mi></mrow><mrow><mi>liq</mi></mrow></msub><mspace></mspace><mi>w</mi><mi>t</mi><mo>.</mo><mo>%</mo></mrow></mfenced><mo>=</mo><mi>a</mi><mo>+</mo><mfrac><mrow><mi>bP</mi></mrow><mi>T</mi></mfrac><mo>+</mo><mi>c</mi><mi>log</mi><msub><mrow><mi>fO</mi></mrow><mn>2</mn></msub><mo>+</mo><mi>d</mi><msub><mrow><mo>[</mo><mi>S</mi><mspace></mspace><mi>w</mi><mi>t</mi><mo>.</mo><mo>%</mo><mo>]</mo></mrow><mrow><mi>SCSS</mi></mrow></msub></mrow></math></span> (1)</div><div>We find that as ƒO<sub>2</sub> decreases from IW-2 to IW-7, S speciation in silicate melt goes through two major changes. Between IW-2 and IW-4, FeS and FeCr<sub>2</sub>S<sub>4</sub> species are destabilized, and CaS becomes the dominant S species with minor TiS. Below IW-4, MgS is the dominant S species with minor CaS. At low <em>f</em>O<sub>2</sub>, S bonding with Fe, Mg, Ca, Ti, Na, and Mn affect the activities of SiO<sub>2</sub>, MgO, CaO, TiO, Na<sub>2</sub>O, and MnO in the silicate melt. This stabilizes enstatite at the expense of forsterite, destabilizes the Ca-bearing minerals plagioclase and clinopyroxene, and shifts plagioclase chemistry from the Ca-rich endmember anorthite to the Na-rich endmember albite as understand by reprojecting silicate ternary diagrams incorporating S speciation data. At the expense of MgS, CaS is more stable in the silicate melt at higher pressures at <em>f</em>O<sub>2</sub> below IW-4 creating a pathway for CaS to be carried in the silicate melt from depth to the surface before oldhamite (CaS) crystallization. These S speciation changes have substantial impacts on physicochemical properties of silicate melt such as viscosity, melting temperature, and mineral stability, which led to the distinct evolution of Mercury and other reduced planetary interiors.</div></div>","PeriodicalId":327,"journal":{"name":"Geochimica et Cosmochimica Acta","volume":"388 ","pages":"Pages 61-77"},"PeriodicalIF":4.5000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An oxygen fugacity-temperature-pressure-composition model for sulfide speciation in Mercurian magmas\",\"authors\":\"Brendan A. Anzures ,&nbsp;Stephen W. Parman ,&nbsp;Ralph E. Milliken ,&nbsp;Olivier Namur ,&nbsp;Camille Cartier ,&nbsp;Francis M. McCubbin ,&nbsp;Kathleen E. Vander Kaaden ,&nbsp;Kelsey Prissel ,&nbsp;Kayla Iacovino ,&nbsp;Antonio Lanzirotti ,&nbsp;Matthew Newville\",\"doi\":\"10.1016/j.gca.2024.11.012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The NASA MESSENGER mission revealed that lavas on Mercury are enriched in sulfur (1.5–4 wt%) compared with other terrestrial planets (&lt;0.1 wt%) due to high S solubility in silicate melt under its very low oxygen fugacity (ƒO<sub>2</sub>). However, the speciation of that S remains poorly constrained. In this study, we evaluate the role of pressure, temperature, and melt composition on S solubility and speciation in reduced magmas relevant to Mercury. Sulfur speciation was determined by S K-edge XANES spectra collected in 60 experiments that span a range of pressure (0.1 to 5 GPa), temperature (1225 to 1850 °C), and ƒO<sub>2</sub> (IW-0.8 to IW-8.6). Data were analysed using new relevant XANES standards and XANES spectral unmixing techniques. Stepwise forward regression was used to develop empirical equations for S species (MgS, CaS, and TiS). We found that <em>f</em>O<sub>2</sub>, P/T, and S content in the silicate melt at sulfide saturation (SCSS) exert the main controls on MgS content (wt.%) in the silicate melt, and that <em>f</em>O<sub>2</sub> and MgS content in the silicate melt exert the main controls on SCSS.</div><div><span><math><mrow><mfenced><mrow><msub><mrow><mi>MgS</mi></mrow><mrow><mi>liq</mi></mrow></msub><mspace></mspace><mi>w</mi><mi>t</mi><mo>.</mo><mo>%</mo></mrow></mfenced><mo>=</mo><mi>a</mi><mo>+</mo><mfrac><mrow><mi>bP</mi></mrow><mi>T</mi></mfrac><mo>+</mo><mi>c</mi><mi>log</mi><msub><mrow><mi>fO</mi></mrow><mn>2</mn></msub><mo>+</mo><mi>d</mi><msub><mrow><mo>[</mo><mi>S</mi><mspace></mspace><mi>w</mi><mi>t</mi><mo>.</mo><mo>%</mo><mo>]</mo></mrow><mrow><mi>SCSS</mi></mrow></msub></mrow></math></span> (1)</div><div>We find that as ƒO<sub>2</sub> decreases from IW-2 to IW-7, S speciation in silicate melt goes through two major changes. Between IW-2 and IW-4, FeS and FeCr<sub>2</sub>S<sub>4</sub> species are destabilized, and CaS becomes the dominant S species with minor TiS. Below IW-4, MgS is the dominant S species with minor CaS. At low <em>f</em>O<sub>2</sub>, S bonding with Fe, Mg, Ca, Ti, Na, and Mn affect the activities of SiO<sub>2</sub>, MgO, CaO, TiO, Na<sub>2</sub>O, and MnO in the silicate melt. This stabilizes enstatite at the expense of forsterite, destabilizes the Ca-bearing minerals plagioclase and clinopyroxene, and shifts plagioclase chemistry from the Ca-rich endmember anorthite to the Na-rich endmember albite as understand by reprojecting silicate ternary diagrams incorporating S speciation data. At the expense of MgS, CaS is more stable in the silicate melt at higher pressures at <em>f</em>O<sub>2</sub> below IW-4 creating a pathway for CaS to be carried in the silicate melt from depth to the surface before oldhamite (CaS) crystallization. These S speciation changes have substantial impacts on physicochemical properties of silicate melt such as viscosity, melting temperature, and mineral stability, which led to the distinct evolution of Mercury and other reduced planetary interiors.</div></div>\",\"PeriodicalId\":327,\"journal\":{\"name\":\"Geochimica et Cosmochimica Acta\",\"volume\":\"388 \",\"pages\":\"Pages 61-77\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geochimica et Cosmochimica Acta\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0016703724005921\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochimica et Cosmochimica Acta","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0016703724005921","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

美国国家航空航天局(NASA)的MESSENGER任务发现,与其他陆地行星(0.1 wt%)相比,水星上的熔岩富含硫磺(1.5-4 wt%),这是因为在水星极低的氧富集度(ƒO2)下,硅酸盐熔体中的硫溶解度很高。然而,这些 S 的种类仍然没有得到很好的解释。在这项研究中,我们评估了压力、温度和熔体成分对与水星有关的还原岩浆中硫的溶解度和标示的作用。通过在压力(0.1 至 5 GPa)、温度(1225 至 1850 °C)和 ƒO2(IW-0.8 至 IW-8.6)范围内的 60 次实验中收集的 S K 边 XANES 图谱确定了硫的种类。利用新的相关 XANES 标准和 XANES 光谱非混合技术对数据进行了分析。采用逐步向前回归的方法为 S 种类(MgS、CaS 和 TiS)建立了经验方程。我们发现,硫化物饱和时硅酸盐熔体中的 fO2、P/T 和 S 含量(SCSS)是硅酸盐熔体中 MgS 含量(重量百分比)的主要控制因素,而硅酸盐熔体中的 fO2 和 MgS 含量则是 SCSS 的主要控制因素。MgSliqwt.%=a+bPT+clogfO2+d[Swt.%]SCSS (1)我们发现,随着ƒO2从IW-2到IW-7的减少,硅酸盐熔体中的S种类经历了两个主要变化。在IW-2到IW-4之间,FeS和FeCr2S4物种不稳定,CaS成为主要的S物种,TiS次之。在 IW-4 以下,MgS 是主要的 S 物种,CaS 为次要。在低 fO2 条件下,S 与 Fe、Mg、Ca、Ti、Na 和 Mn 的结合会影响硅酸盐熔体中 SiO2、MgO、CaO、TiO、Na2O 和 MnO 的活性。这稳定了闪长岩而牺牲了绿柱石,破坏了含钙质矿物斜长石和鳞片辉石的稳定性,并使斜长石的化学性质从富含钙质的内质阳起石转变为富含镁质的内质白云石,这一点可以通过重新绘制硅酸盐三元图来理解,其中包含 S 的标示数据。在低于IW-4的fO2条件下,硅酸盐熔体中的CaS在较高压力下更加稳定,而MgS则受到影响,这就为CaS在老汉岩(CaS)结晶之前在硅酸盐熔体中从深部被带到地表提供了一条途径。这些硅酸盐的变化对硅酸盐熔体的物理化学性质(如粘度、熔化温度和矿物稳定性)产生了重大影响,从而导致了水星和其他还原行星内部的独特演化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An oxygen fugacity-temperature-pressure-composition model for sulfide speciation in Mercurian magmas
The NASA MESSENGER mission revealed that lavas on Mercury are enriched in sulfur (1.5–4 wt%) compared with other terrestrial planets (<0.1 wt%) due to high S solubility in silicate melt under its very low oxygen fugacity (ƒO2). However, the speciation of that S remains poorly constrained. In this study, we evaluate the role of pressure, temperature, and melt composition on S solubility and speciation in reduced magmas relevant to Mercury. Sulfur speciation was determined by S K-edge XANES spectra collected in 60 experiments that span a range of pressure (0.1 to 5 GPa), temperature (1225 to 1850 °C), and ƒO2 (IW-0.8 to IW-8.6). Data were analysed using new relevant XANES standards and XANES spectral unmixing techniques. Stepwise forward regression was used to develop empirical equations for S species (MgS, CaS, and TiS). We found that fO2, P/T, and S content in the silicate melt at sulfide saturation (SCSS) exert the main controls on MgS content (wt.%) in the silicate melt, and that fO2 and MgS content in the silicate melt exert the main controls on SCSS.
MgSliqwt.%=a+bPT+clogfO2+d[Swt.%]SCSS (1)
We find that as ƒO2 decreases from IW-2 to IW-7, S speciation in silicate melt goes through two major changes. Between IW-2 and IW-4, FeS and FeCr2S4 species are destabilized, and CaS becomes the dominant S species with minor TiS. Below IW-4, MgS is the dominant S species with minor CaS. At low fO2, S bonding with Fe, Mg, Ca, Ti, Na, and Mn affect the activities of SiO2, MgO, CaO, TiO, Na2O, and MnO in the silicate melt. This stabilizes enstatite at the expense of forsterite, destabilizes the Ca-bearing minerals plagioclase and clinopyroxene, and shifts plagioclase chemistry from the Ca-rich endmember anorthite to the Na-rich endmember albite as understand by reprojecting silicate ternary diagrams incorporating S speciation data. At the expense of MgS, CaS is more stable in the silicate melt at higher pressures at fO2 below IW-4 creating a pathway for CaS to be carried in the silicate melt from depth to the surface before oldhamite (CaS) crystallization. These S speciation changes have substantial impacts on physicochemical properties of silicate melt such as viscosity, melting temperature, and mineral stability, which led to the distinct evolution of Mercury and other reduced planetary interiors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geochimica et Cosmochimica Acta
Geochimica et Cosmochimica Acta 地学-地球化学与地球物理
CiteScore
9.60
自引率
14.00%
发文量
437
审稿时长
6 months
期刊介绍: Geochimica et Cosmochimica Acta publishes research papers in a wide range of subjects in terrestrial geochemistry, meteoritics, and planetary geochemistry. The scope of the journal includes: 1). Physical chemistry of gases, aqueous solutions, glasses, and crystalline solids 2). Igneous and metamorphic petrology 3). Chemical processes in the atmosphere, hydrosphere, biosphere, and lithosphere of the Earth 4). Organic geochemistry 5). Isotope geochemistry 6). Meteoritics and meteorite impacts 7). Lunar science; and 8). Planetary geochemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信