{"title":"多层聚合物薄膜的机械性能:分子动力学模拟","authors":"Sofia D. Melnikova, Sergey V. Larin","doi":"10.1016/j.commatsci.2024.113545","DOIUrl":null,"url":null,"abstract":"<div><div>The effect of several<!--> <!-->key factors on the mechanical properties of multilayer polymer films<!--> <!-->under<!--> <!-->tensile and shear<!--> <!-->deformations was thoroughly investigated using atomistic molecular dynamics simulations. These factors included the composition of the layers, the compatibility of polymers in the layers, the crystallinity of polymers, and the thickness of the layers, especially when it decreases to values close to the radius of gyration (<em>R<sub>g</sub></em>) of the polymers. Three types of multilayer systems were considered: polylactide/poly(3-hydroxybutyrate) (PLA/PHB) based on polymers compatible for the selected chain lengths, polylactide/polyethylene (PLA/PE) with incompatible polymers in layers, and polylactide/polylactide (PLA/PLA). It was shown that reducing the<!--> <!-->layer<!--> <!-->thickness to the value close to <em>R<sub>g</sub></em> led to an increase in Young’s modulus for both types of systems with compatible polymers in layers PLA/PHB and with incompatible<!--> <!-->polymers PLA/PE. This effect was found for the systems composed of amorphous polymers. The influence of the layer thickness on shear modulus, yield stress under tensile and shear deformations was also analyzed. Young’s modulus and yield stress under tensile deformation were in line with the “rule of mixture” for all types of the systems. Both the shear modulus and yield stress under shear for PLA/PE tended to the values for bulk PE. Analysis of local atomic shear strain was employed to quantify local plastic deformations at the atomic level during the shear deformation. The pattern of local atomic shear strain distribution for the PLA/PHB and PLA/PLA systems was found to be significantly different from that for PLA/PE.</div></div>","PeriodicalId":10650,"journal":{"name":"Computational Materials Science","volume":"247 ","pages":"Article 113545"},"PeriodicalIF":3.1000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanical properties of the multilayer polymer films: Molecular dynamics simulations\",\"authors\":\"Sofia D. Melnikova, Sergey V. Larin\",\"doi\":\"10.1016/j.commatsci.2024.113545\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The effect of several<!--> <!-->key factors on the mechanical properties of multilayer polymer films<!--> <!-->under<!--> <!-->tensile and shear<!--> <!-->deformations was thoroughly investigated using atomistic molecular dynamics simulations. These factors included the composition of the layers, the compatibility of polymers in the layers, the crystallinity of polymers, and the thickness of the layers, especially when it decreases to values close to the radius of gyration (<em>R<sub>g</sub></em>) of the polymers. Three types of multilayer systems were considered: polylactide/poly(3-hydroxybutyrate) (PLA/PHB) based on polymers compatible for the selected chain lengths, polylactide/polyethylene (PLA/PE) with incompatible polymers in layers, and polylactide/polylactide (PLA/PLA). It was shown that reducing the<!--> <!-->layer<!--> <!-->thickness to the value close to <em>R<sub>g</sub></em> led to an increase in Young’s modulus for both types of systems with compatible polymers in layers PLA/PHB and with incompatible<!--> <!-->polymers PLA/PE. This effect was found for the systems composed of amorphous polymers. The influence of the layer thickness on shear modulus, yield stress under tensile and shear deformations was also analyzed. Young’s modulus and yield stress under tensile deformation were in line with the “rule of mixture” for all types of the systems. Both the shear modulus and yield stress under shear for PLA/PE tended to the values for bulk PE. Analysis of local atomic shear strain was employed to quantify local plastic deformations at the atomic level during the shear deformation. The pattern of local atomic shear strain distribution for the PLA/PHB and PLA/PLA systems was found to be significantly different from that for PLA/PE.</div></div>\",\"PeriodicalId\":10650,\"journal\":{\"name\":\"Computational Materials Science\",\"volume\":\"247 \",\"pages\":\"Article 113545\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927025624007663\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927025624007663","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Mechanical properties of the multilayer polymer films: Molecular dynamics simulations
The effect of several key factors on the mechanical properties of multilayer polymer films under tensile and shear deformations was thoroughly investigated using atomistic molecular dynamics simulations. These factors included the composition of the layers, the compatibility of polymers in the layers, the crystallinity of polymers, and the thickness of the layers, especially when it decreases to values close to the radius of gyration (Rg) of the polymers. Three types of multilayer systems were considered: polylactide/poly(3-hydroxybutyrate) (PLA/PHB) based on polymers compatible for the selected chain lengths, polylactide/polyethylene (PLA/PE) with incompatible polymers in layers, and polylactide/polylactide (PLA/PLA). It was shown that reducing the layer thickness to the value close to Rg led to an increase in Young’s modulus for both types of systems with compatible polymers in layers PLA/PHB and with incompatible polymers PLA/PE. This effect was found for the systems composed of amorphous polymers. The influence of the layer thickness on shear modulus, yield stress under tensile and shear deformations was also analyzed. Young’s modulus and yield stress under tensile deformation were in line with the “rule of mixture” for all types of the systems. Both the shear modulus and yield stress under shear for PLA/PE tended to the values for bulk PE. Analysis of local atomic shear strain was employed to quantify local plastic deformations at the atomic level during the shear deformation. The pattern of local atomic shear strain distribution for the PLA/PHB and PLA/PLA systems was found to be significantly different from that for PLA/PE.
期刊介绍:
The goal of Computational Materials Science is to report on results that provide new or unique insights into, or significantly expand our understanding of, the properties of materials or phenomena associated with their design, synthesis, processing, characterization, and utilization. To be relevant to the journal, the results should be applied or applicable to specific material systems that are discussed within the submission.