双轴应变和硫/硼掺杂对 g-C3N5 系统光催化性能的影响:第一原理研究

IF 3.1 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yongde Yao , Fujian Tang , Shangtong Yang
{"title":"双轴应变和硫/硼掺杂对 g-C3N5 系统光催化性能的影响:第一原理研究","authors":"Yongde Yao ,&nbsp;Fujian Tang ,&nbsp;Shangtong Yang","doi":"10.1016/j.commatsci.2024.113560","DOIUrl":null,"url":null,"abstract":"<div><div>Strain and doping are effective methods for enhancing the intrinsic properties of the photocatalyst g- C<sub>3</sub>N<sub>5</sub>. This paper investigates the electronic properties, optical characteristics, and changes in Gibbs free energy of g-C<sub>3</sub>N<sub>5</sub> under the combined effects of biaxial strain and sulfur/boron (S/B) doping through first-principles calculations. By calculating the formation energy of the doping system, the optimal doping positions for B/S are identified. The results indicate that intrinsic g-C<sub>3</sub>N<sub>5</sub> exhibits indirect band gap semiconductor properties with a band gap of 1.851 eV. In contrast, S/B doping reduces the band gap, with the S-doped g-C<sub>3</sub>N<sub>5</sub> system (S-g-C<sub>3</sub>N<sub>5</sub>) displaying direct band gap semiconductor properties and a band gap of 1.677 eV. The application of tensile or compressive strain induces a red shift or blue shift in the absorption spectra of both the intrinsic g-C<sub>3</sub>N<sub>5</sub> system and the doped system. Tensile strain positions the band edges of all systems favorably, enhancing carrier mobility and redox capability. This study provides valuable insights for the development of photocatalytic carbon nitride through atomic doping and strain modulation.</div></div>","PeriodicalId":10650,"journal":{"name":"Computational Materials Science","volume":"247 ","pages":"Article 113560"},"PeriodicalIF":3.1000,"publicationDate":"2024-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The effects of biaxial strain and sulfur/boron doping on the photocatalytic performance of the g-C3N5 system: A first-principles study\",\"authors\":\"Yongde Yao ,&nbsp;Fujian Tang ,&nbsp;Shangtong Yang\",\"doi\":\"10.1016/j.commatsci.2024.113560\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Strain and doping are effective methods for enhancing the intrinsic properties of the photocatalyst g- C<sub>3</sub>N<sub>5</sub>. This paper investigates the electronic properties, optical characteristics, and changes in Gibbs free energy of g-C<sub>3</sub>N<sub>5</sub> under the combined effects of biaxial strain and sulfur/boron (S/B) doping through first-principles calculations. By calculating the formation energy of the doping system, the optimal doping positions for B/S are identified. The results indicate that intrinsic g-C<sub>3</sub>N<sub>5</sub> exhibits indirect band gap semiconductor properties with a band gap of 1.851 eV. In contrast, S/B doping reduces the band gap, with the S-doped g-C<sub>3</sub>N<sub>5</sub> system (S-g-C<sub>3</sub>N<sub>5</sub>) displaying direct band gap semiconductor properties and a band gap of 1.677 eV. The application of tensile or compressive strain induces a red shift or blue shift in the absorption spectra of both the intrinsic g-C<sub>3</sub>N<sub>5</sub> system and the doped system. Tensile strain positions the band edges of all systems favorably, enhancing carrier mobility and redox capability. This study provides valuable insights for the development of photocatalytic carbon nitride through atomic doping and strain modulation.</div></div>\",\"PeriodicalId\":10650,\"journal\":{\"name\":\"Computational Materials Science\",\"volume\":\"247 \",\"pages\":\"Article 113560\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S092702562400781X\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092702562400781X","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

应变和掺杂是增强光催化剂 g-C3N5 固有特性的有效方法。本文通过第一原理计算,研究了在双轴应变和硫/硼(S/B)掺杂的共同作用下 g-C3N5 的电子特性、光学特征和吉布斯自由能的变化。通过计算掺杂体系的形成能,确定了 B/S 的最佳掺杂位置。结果表明,本征 g-C3N5 具有间接带隙半导体特性,带隙为 1.851 eV。相比之下,S/B 掺杂降低了带隙,S 掺杂的 g-C3N5 系统(S-g-C3N5)显示出直接带隙半导体特性,带隙为 1.677 eV。施加拉伸或压缩应变会导致本征 g-C3N5 系统和掺杂系统的吸收光谱发生红移或蓝移。拉伸应变使所有体系的带边缘位置发生有利的变化,从而提高了载流子的迁移率和氧化还原能力。这项研究为通过原子掺杂和应变调制开发光催化氮化碳提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The effects of biaxial strain and sulfur/boron doping on the photocatalytic performance of the g-C3N5 system: A first-principles study

The effects of biaxial strain and sulfur/boron doping on the photocatalytic performance of the g-C3N5 system: A first-principles study
Strain and doping are effective methods for enhancing the intrinsic properties of the photocatalyst g- C3N5. This paper investigates the electronic properties, optical characteristics, and changes in Gibbs free energy of g-C3N5 under the combined effects of biaxial strain and sulfur/boron (S/B) doping through first-principles calculations. By calculating the formation energy of the doping system, the optimal doping positions for B/S are identified. The results indicate that intrinsic g-C3N5 exhibits indirect band gap semiconductor properties with a band gap of 1.851 eV. In contrast, S/B doping reduces the band gap, with the S-doped g-C3N5 system (S-g-C3N5) displaying direct band gap semiconductor properties and a band gap of 1.677 eV. The application of tensile or compressive strain induces a red shift or blue shift in the absorption spectra of both the intrinsic g-C3N5 system and the doped system. Tensile strain positions the band edges of all systems favorably, enhancing carrier mobility and redox capability. This study provides valuable insights for the development of photocatalytic carbon nitride through atomic doping and strain modulation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Materials Science
Computational Materials Science 工程技术-材料科学:综合
CiteScore
6.50
自引率
6.10%
发文量
665
审稿时长
26 days
期刊介绍: The goal of Computational Materials Science is to report on results that provide new or unique insights into, or significantly expand our understanding of, the properties of materials or phenomena associated with their design, synthesis, processing, characterization, and utilization. To be relevant to the journal, the results should be applied or applicable to specific material systems that are discussed within the submission.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信