增材制造中微结构预测的代用模型

IF 3.1 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Arulmurugan Senthilnathan , Paromita Nath , Sankaran Mahadevan , Paul Witherell
{"title":"增材制造中微结构预测的代用模型","authors":"Arulmurugan Senthilnathan ,&nbsp;Paromita Nath ,&nbsp;Sankaran Mahadevan ,&nbsp;Paul Witherell","doi":"10.1016/j.commatsci.2024.113536","DOIUrl":null,"url":null,"abstract":"<div><div>Variability in the additive manufacturing process and powder material properties affect the microstructure which influences the macro-scale material properties. Systematic quantification and propagation of this<!--> <!-->uncertainty require numerous process-structure–property<!--> <!-->(P-S-P)<!--> <!-->simulations. However, the high computational cost of the P-S simulation (thermal model), which relates the microstructure to the process parameters, necessitates the need for inexpensive surrogate models. Moreover, the P-S simulation generates a high-dimensional microstructure image; this presents a challenge in constructing a surrogate model whose inputs are process parameters and output is the microstructure image. This work addresses this challenge and develops a novel approach to surrogate modeling. First, a dimension reduction method based on combining the concepts of image moment invariants and principal components is used to map the high-dimensional microstructure image into latent space. A surrogate model is then constructed in the low-dimensional latent space to predict the principal features, which are then mapped to the original dimension to obtain the microstructure image. The surrogate model-predicted microstructure image is verified against the original physics model prediction (thermal model + phase-field) of the microstructure image, using Hu moments. Developing this surrogate modeling approach paves<!--> <!-->the way for<!--> <!-->solving computationally expensive tasks such as uncertainty quantification and process parameter optimization.</div></div>","PeriodicalId":10650,"journal":{"name":"Computational Materials Science","volume":"247 ","pages":"Article 113536"},"PeriodicalIF":3.1000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Surrogate modeling of microstructure prediction in additive manufacturing\",\"authors\":\"Arulmurugan Senthilnathan ,&nbsp;Paromita Nath ,&nbsp;Sankaran Mahadevan ,&nbsp;Paul Witherell\",\"doi\":\"10.1016/j.commatsci.2024.113536\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Variability in the additive manufacturing process and powder material properties affect the microstructure which influences the macro-scale material properties. Systematic quantification and propagation of this<!--> <!-->uncertainty require numerous process-structure–property<!--> <!-->(P-S-P)<!--> <!-->simulations. However, the high computational cost of the P-S simulation (thermal model), which relates the microstructure to the process parameters, necessitates the need for inexpensive surrogate models. Moreover, the P-S simulation generates a high-dimensional microstructure image; this presents a challenge in constructing a surrogate model whose inputs are process parameters and output is the microstructure image. This work addresses this challenge and develops a novel approach to surrogate modeling. First, a dimension reduction method based on combining the concepts of image moment invariants and principal components is used to map the high-dimensional microstructure image into latent space. A surrogate model is then constructed in the low-dimensional latent space to predict the principal features, which are then mapped to the original dimension to obtain the microstructure image. The surrogate model-predicted microstructure image is verified against the original physics model prediction (thermal model + phase-field) of the microstructure image, using Hu moments. Developing this surrogate modeling approach paves<!--> <!-->the way for<!--> <!-->solving computationally expensive tasks such as uncertainty quantification and process parameter optimization.</div></div>\",\"PeriodicalId\":10650,\"journal\":{\"name\":\"Computational Materials Science\",\"volume\":\"247 \",\"pages\":\"Article 113536\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927025624007572\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927025624007572","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

增材制造工艺和粉末材料特性的不确定性会影响微观结构,而微观结构又会影响宏观材料特性。要系统地量化和传播这种不确定性,需要进行大量的工艺-结构-性能(P-S-P)模拟。然而,P-S 模拟(热模型)将微观结构与工艺参数联系起来,计算成本很高,因此需要廉价的替代模型。此外,P-S 模拟会生成高维微观结构图像;这对构建输入为工艺参数、输出为微观结构图像的代用模型提出了挑战。本研究针对这一挑战,开发了一种新颖的代理建模方法。首先,结合图像矩不变式和主成分的概念,采用降维方法将高维微观结构图像映射到潜在空间。然后在低维潜在空间中构建代用模型来预测主特征,再将主特征映射到原始维度,从而得到微观结构图像。代用模型预测的微观结构图像与原始物理模型(热模型 + 相场)预测的微观结构图像使用 Hu 矩进行验证。开发这种代用模型方法为解决计算昂贵的任务(如不确定性量化和工艺参数优化)铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Surrogate modeling of microstructure prediction in additive manufacturing

Surrogate modeling of microstructure prediction in additive manufacturing
Variability in the additive manufacturing process and powder material properties affect the microstructure which influences the macro-scale material properties. Systematic quantification and propagation of this uncertainty require numerous process-structure–property (P-S-P) simulations. However, the high computational cost of the P-S simulation (thermal model), which relates the microstructure to the process parameters, necessitates the need for inexpensive surrogate models. Moreover, the P-S simulation generates a high-dimensional microstructure image; this presents a challenge in constructing a surrogate model whose inputs are process parameters and output is the microstructure image. This work addresses this challenge and develops a novel approach to surrogate modeling. First, a dimension reduction method based on combining the concepts of image moment invariants and principal components is used to map the high-dimensional microstructure image into latent space. A surrogate model is then constructed in the low-dimensional latent space to predict the principal features, which are then mapped to the original dimension to obtain the microstructure image. The surrogate model-predicted microstructure image is verified against the original physics model prediction (thermal model + phase-field) of the microstructure image, using Hu moments. Developing this surrogate modeling approach paves the way for solving computationally expensive tasks such as uncertainty quantification and process parameter optimization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Materials Science
Computational Materials Science 工程技术-材料科学:综合
CiteScore
6.50
自引率
6.10%
发文量
665
审稿时长
26 days
期刊介绍: The goal of Computational Materials Science is to report on results that provide new or unique insights into, or significantly expand our understanding of, the properties of materials or phenomena associated with their design, synthesis, processing, characterization, and utilization. To be relevant to the journal, the results should be applied or applicable to specific material systems that are discussed within the submission.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信