{"title":"用于 V-Cr-Nb-Mo-Ta-W 体系分子动力学模拟的 N 体原子间势能","authors":"V.N. Maksimenko , A.G. Lipnitskii , V.N. Saveliev , A.I. Kartamyshev , A.V. Vyazmin , D.O. Poletaev","doi":"10.1016/j.commatsci.2024.113533","DOIUrl":null,"url":null,"abstract":"<div><div>Diffusion in high-entropy alloys is an important phenomenon controlling its evolution during exploitation. Its detailed investigation, especially at elevated temperatures, is a challenging task. Molecular dynamics simulations facilitate significantly findings in this area and provide valuable insights into it. The key part of the molecular dynamics is the interatomic potential representing the dependence of the potential energy of the system of atoms on their coordinates. To correctly calculate the diffusivity, the potentials should satisfy several criteria such as an accurate reproduction of the melting point and thermal expansion. The last one is crucial as diffusion is strongly influenced by the size factor. We used the N-body approach to construct the interatomic potential for the high-entropy alloy V-Cr-Nb-Mo-Ta-W system, which consists of the potentials for pure elements and binary systems constituting the six-component one. The constituting potentials reproduce structure, elastic, defect and melting properties of pure elements and concentration dependent properties of binary systems. As a test for the VNbMoTaW and VCrNbMoTaW alloys, we calculated the forces acting on atoms for a set of different compositions and obtained the adequate agreement with the density functional theory (DFT) results. Additionally, we computed the surface and excess screw dislocation energies for both pure elements and alloys. The experimental surface energy values averaged over the elements show remarkable agreement (less than 10%) for the equiatomic VNbMoTaW and VCrNbMoTaW alloys. The excess screw dislocation energies of pure elements are predicted in qualitative agreement with DFT results, with tungsten having the highest energy and vanadium and niobium having the lowest. The corresponding values for five- and six-component alloys are less than DFT ones with deviations of 7% and 34%, respectively. They are close or moderately less than the energies averaged over pure elements.</div></div>","PeriodicalId":10650,"journal":{"name":"Computational Materials Science","volume":"247 ","pages":"Article 113533"},"PeriodicalIF":3.1000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"N-body interatomic potential for molecular dynamics simulations of V-Cr-Nb-Mo-Ta-W system\",\"authors\":\"V.N. Maksimenko , A.G. Lipnitskii , V.N. Saveliev , A.I. Kartamyshev , A.V. Vyazmin , D.O. Poletaev\",\"doi\":\"10.1016/j.commatsci.2024.113533\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Diffusion in high-entropy alloys is an important phenomenon controlling its evolution during exploitation. Its detailed investigation, especially at elevated temperatures, is a challenging task. Molecular dynamics simulations facilitate significantly findings in this area and provide valuable insights into it. The key part of the molecular dynamics is the interatomic potential representing the dependence of the potential energy of the system of atoms on their coordinates. To correctly calculate the diffusivity, the potentials should satisfy several criteria such as an accurate reproduction of the melting point and thermal expansion. The last one is crucial as diffusion is strongly influenced by the size factor. We used the N-body approach to construct the interatomic potential for the high-entropy alloy V-Cr-Nb-Mo-Ta-W system, which consists of the potentials for pure elements and binary systems constituting the six-component one. The constituting potentials reproduce structure, elastic, defect and melting properties of pure elements and concentration dependent properties of binary systems. As a test for the VNbMoTaW and VCrNbMoTaW alloys, we calculated the forces acting on atoms for a set of different compositions and obtained the adequate agreement with the density functional theory (DFT) results. Additionally, we computed the surface and excess screw dislocation energies for both pure elements and alloys. The experimental surface energy values averaged over the elements show remarkable agreement (less than 10%) for the equiatomic VNbMoTaW and VCrNbMoTaW alloys. The excess screw dislocation energies of pure elements are predicted in qualitative agreement with DFT results, with tungsten having the highest energy and vanadium and niobium having the lowest. The corresponding values for five- and six-component alloys are less than DFT ones with deviations of 7% and 34%, respectively. They are close or moderately less than the energies averaged over pure elements.</div></div>\",\"PeriodicalId\":10650,\"journal\":{\"name\":\"Computational Materials Science\",\"volume\":\"247 \",\"pages\":\"Article 113533\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927025624007547\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927025624007547","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
N-body interatomic potential for molecular dynamics simulations of V-Cr-Nb-Mo-Ta-W system
Diffusion in high-entropy alloys is an important phenomenon controlling its evolution during exploitation. Its detailed investigation, especially at elevated temperatures, is a challenging task. Molecular dynamics simulations facilitate significantly findings in this area and provide valuable insights into it. The key part of the molecular dynamics is the interatomic potential representing the dependence of the potential energy of the system of atoms on their coordinates. To correctly calculate the diffusivity, the potentials should satisfy several criteria such as an accurate reproduction of the melting point and thermal expansion. The last one is crucial as diffusion is strongly influenced by the size factor. We used the N-body approach to construct the interatomic potential for the high-entropy alloy V-Cr-Nb-Mo-Ta-W system, which consists of the potentials for pure elements and binary systems constituting the six-component one. The constituting potentials reproduce structure, elastic, defect and melting properties of pure elements and concentration dependent properties of binary systems. As a test for the VNbMoTaW and VCrNbMoTaW alloys, we calculated the forces acting on atoms for a set of different compositions and obtained the adequate agreement with the density functional theory (DFT) results. Additionally, we computed the surface and excess screw dislocation energies for both pure elements and alloys. The experimental surface energy values averaged over the elements show remarkable agreement (less than 10%) for the equiatomic VNbMoTaW and VCrNbMoTaW alloys. The excess screw dislocation energies of pure elements are predicted in qualitative agreement with DFT results, with tungsten having the highest energy and vanadium and niobium having the lowest. The corresponding values for five- and six-component alloys are less than DFT ones with deviations of 7% and 34%, respectively. They are close or moderately less than the energies averaged over pure elements.
期刊介绍:
The goal of Computational Materials Science is to report on results that provide new or unique insights into, or significantly expand our understanding of, the properties of materials or phenomena associated with their design, synthesis, processing, characterization, and utilization. To be relevant to the journal, the results should be applied or applicable to specific material systems that are discussed within the submission.