阴离子半径 - 根据香农表校准的新数据点

IF 3.1 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Mohammed A. Alsalman , Mahmoud S. Hezam , Saad M. Alqahtani , Ahmer A.B. Baloch , Fahhad H. Alharbi
{"title":"阴离子半径 - 根据香农表校准的新数据点","authors":"Mohammed A. Alsalman ,&nbsp;Mahmoud S. Hezam ,&nbsp;Saad M. Alqahtani ,&nbsp;Ahmer A.B. Baloch ,&nbsp;Fahhad H. Alharbi","doi":"10.1016/j.commatsci.2024.113491","DOIUrl":null,"url":null,"abstract":"<div><div>Ionic radii play a key descriptor role in the field of material informatics and crystallography. Traditionally, improving the widely used Shannon’s radii dataset has primarily involved extending the cation radii since the original data was mostly cation-focused – thereby limiting its applicability. Accordingly, we have developed a method to estimate anion radii using a self-consistent calibration approach based on interatomic distances in binary compounds. This improvement shall enhance the precision of ionic radii-based descriptors, allowing for the exploration of a broader range of compounds beyond the usual oxides and fluorides. In this study, we conducted a detailed calibration protocol to enhance Shannon’s consolidated ionic radii table by integrating new anion entries and ensuring consistency with the established data. We employed a low-order regression model on the reference anions <figure><img></figure> , <figure><img></figure> , and <figure><img></figure> to accurately estimate their radii in missing coordination numbers (five other points). These values proved crucial for recalibrating the set of key reference cations’ radii, which included <figure><img></figure> , <figure><img></figure> , <figure><img></figure> , <figure><img></figure> , <figure><img></figure> , and <figure><img></figure> , across coordination numbers 4, 6, and 8. We used recently updated and accurate interatomic distances from highly symmetric cubic binary structures in the Materials Project database to ensure this recalibration. Consequently, the adjusted cationic radii matched closely with Shannon’s original values, with deviations less than 5%, highlighting the accuracy of our approach. These calibrated cations were then used to derive new anion entries for binary and highly symmetric compounds expanding the data the database from 16 anion in Shannon’s to 33 in the proposed work. The implemented method resulted in 17 new anion configurations, namely <figure><img></figure> , <figure><img></figure> , <figure><img></figure> , <figure><img></figure> , <figure><img></figure> , <figure><img></figure> , <figure><img></figure> , <figure><img></figure> , <figure><img></figure> , <figure><img></figure> , <figure><img></figure> , <figure><img></figure> , <figure><img></figure> , <figure><img></figure> , <figure><img></figure> , <figure><img></figure> , and <figure><img></figure> , and updated six existing configurations, namely <figure><img></figure> , <figure><img></figure> , <figure><img></figure> , <figure><img></figure> , <figure><img></figure> , and <figure><img></figure> . Our results have been integrated into Shannon’s updated ionic radii table, accessible at <span><span>https://cmd-ml.github.io/</span><svg><path></path></svg></span>, providing a robust data set for ongoing and future research in crystallography and materials engineering.</div></div>","PeriodicalId":10650,"journal":{"name":"Computational Materials Science","volume":"247 ","pages":"Article 113491"},"PeriodicalIF":3.1000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anions’ Radii — New data points calibrated to match Shannon’s table\",\"authors\":\"Mohammed A. Alsalman ,&nbsp;Mahmoud S. Hezam ,&nbsp;Saad M. Alqahtani ,&nbsp;Ahmer A.B. Baloch ,&nbsp;Fahhad H. Alharbi\",\"doi\":\"10.1016/j.commatsci.2024.113491\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Ionic radii play a key descriptor role in the field of material informatics and crystallography. Traditionally, improving the widely used Shannon’s radii dataset has primarily involved extending the cation radii since the original data was mostly cation-focused – thereby limiting its applicability. Accordingly, we have developed a method to estimate anion radii using a self-consistent calibration approach based on interatomic distances in binary compounds. This improvement shall enhance the precision of ionic radii-based descriptors, allowing for the exploration of a broader range of compounds beyond the usual oxides and fluorides. In this study, we conducted a detailed calibration protocol to enhance Shannon’s consolidated ionic radii table by integrating new anion entries and ensuring consistency with the established data. We employed a low-order regression model on the reference anions <figure><img></figure> , <figure><img></figure> , and <figure><img></figure> to accurately estimate their radii in missing coordination numbers (five other points). These values proved crucial for recalibrating the set of key reference cations’ radii, which included <figure><img></figure> , <figure><img></figure> , <figure><img></figure> , <figure><img></figure> , <figure><img></figure> , and <figure><img></figure> , across coordination numbers 4, 6, and 8. We used recently updated and accurate interatomic distances from highly symmetric cubic binary structures in the Materials Project database to ensure this recalibration. Consequently, the adjusted cationic radii matched closely with Shannon’s original values, with deviations less than 5%, highlighting the accuracy of our approach. These calibrated cations were then used to derive new anion entries for binary and highly symmetric compounds expanding the data the database from 16 anion in Shannon’s to 33 in the proposed work. The implemented method resulted in 17 new anion configurations, namely <figure><img></figure> , <figure><img></figure> , <figure><img></figure> , <figure><img></figure> , <figure><img></figure> , <figure><img></figure> , <figure><img></figure> , <figure><img></figure> , <figure><img></figure> , <figure><img></figure> , <figure><img></figure> , <figure><img></figure> , <figure><img></figure> , <figure><img></figure> , <figure><img></figure> , <figure><img></figure> , and <figure><img></figure> , and updated six existing configurations, namely <figure><img></figure> , <figure><img></figure> , <figure><img></figure> , <figure><img></figure> , <figure><img></figure> , and <figure><img></figure> . Our results have been integrated into Shannon’s updated ionic radii table, accessible at <span><span>https://cmd-ml.github.io/</span><svg><path></path></svg></span>, providing a robust data set for ongoing and future research in crystallography and materials engineering.</div></div>\",\"PeriodicalId\":10650,\"journal\":{\"name\":\"Computational Materials Science\",\"volume\":\"247 \",\"pages\":\"Article 113491\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927025624007122\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927025624007122","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

离子半径在材料信息学和晶体学领域发挥着重要的描述作用。传统上,改进广泛使用的香农半径数据集主要涉及扩展阳离子半径,因为原始数据主要以阳离子为重点,从而限制了其适用性。因此,我们开发了一种基于二元化合物原子间距离的自洽校准方法来估算阴离子半径。这一改进将提高基于离子半径的描述符的精确度,从而可以探索除常见的氧化物和氟化物之外的更广泛的化合物。在本研究中,我们采用了详细的校准方案,通过整合新的阴离子条目来改进香农离子半径综合表,并确保与已建立的数据保持一致。我们采用了一个低阶回归模型来计算参考阴离子、、和的半径,以准确估计它们在缺失配位数(另外五个点)中的半径。这些数值对于重新校准关键参考阳离子半径集至关重要,其中包括配位数为 4、6 和 8 的 、 、 、 和 。我们使用了材料项目数据库中最近更新的高度对称立方二元结构的精确原子间距离,以确保重新校准。因此,调整后的阳离子半径与香农的原始值非常吻合,偏差小于 5%,凸显了我们方法的准确性。这些经过校准的阳离子随后被用于推导二元化合物和高度对称化合物的新阴离子条目,将数据数据库从香农的 16 个阴离子扩展到提议工作中的 33 个阴离子。该方法产生了 17 种新的阴离子构型,即、、、、、、、、和,并更新了 6 种现有构型,即、、、、和。我们的研究结果已纳入香农更新的离子半径表中,可在 https://cmd-ml.github.io/ 网站上查阅,为晶体学和材料工程领域正在进行和未来的研究提供了一个强大的数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Anions’ Radii — New data points calibrated to match Shannon’s table

Anions’ Radii — New data points calibrated to match Shannon’s table
Ionic radii play a key descriptor role in the field of material informatics and crystallography. Traditionally, improving the widely used Shannon’s radii dataset has primarily involved extending the cation radii since the original data was mostly cation-focused – thereby limiting its applicability. Accordingly, we have developed a method to estimate anion radii using a self-consistent calibration approach based on interatomic distances in binary compounds. This improvement shall enhance the precision of ionic radii-based descriptors, allowing for the exploration of a broader range of compounds beyond the usual oxides and fluorides. In this study, we conducted a detailed calibration protocol to enhance Shannon’s consolidated ionic radii table by integrating new anion entries and ensuring consistency with the established data. We employed a low-order regression model on the reference anions
,
, and
to accurately estimate their radii in missing coordination numbers (five other points). These values proved crucial for recalibrating the set of key reference cations’ radii, which included
,
,
,
,
, and
, across coordination numbers 4, 6, and 8. We used recently updated and accurate interatomic distances from highly symmetric cubic binary structures in the Materials Project database to ensure this recalibration. Consequently, the adjusted cationic radii matched closely with Shannon’s original values, with deviations less than 5%, highlighting the accuracy of our approach. These calibrated cations were then used to derive new anion entries for binary and highly symmetric compounds expanding the data the database from 16 anion in Shannon’s to 33 in the proposed work. The implemented method resulted in 17 new anion configurations, namely
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
, and
, and updated six existing configurations, namely
,
,
,
,
, and
. Our results have been integrated into Shannon’s updated ionic radii table, accessible at https://cmd-ml.github.io/, providing a robust data set for ongoing and future research in crystallography and materials engineering.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Materials Science
Computational Materials Science 工程技术-材料科学:综合
CiteScore
6.50
自引率
6.10%
发文量
665
审稿时长
26 days
期刊介绍: The goal of Computational Materials Science is to report on results that provide new or unique insights into, or significantly expand our understanding of, the properties of materials or phenomena associated with their design, synthesis, processing, characterization, and utilization. To be relevant to the journal, the results should be applied or applicable to specific material systems that are discussed within the submission.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信