{"title":"基于人工神经网络的虚拟同步发电机用于提高分布式发电机并网发电的频率稳定性","authors":"Abderrahmane Smahi , Salim Makhloufi","doi":"10.1016/j.compeleceng.2024.109877","DOIUrl":null,"url":null,"abstract":"<div><div>The integration of renewable energy sources (RESs) is becoming increasingly prevalent in contemporary power grids. RESs, including distributed generators (DGs), utilize power electronics converters to interface with the grid, contributing to a reduction in grid inertia and an increase in vulnerability to stability issues. This shift has led to a gradual displacement of the traditional role of synchronous generators (SGs) in providing frequency regulation, with power electronics converters such as inverters taking on a more prominent role. Virtual synchronous generators (VSGs) or virtual synchronous machines (VSMs) offer a solution by emulating SG behavior in power electronics converters. However, these techniques encounter limitations in mathematical calculations and precision. This article proposes an artificial intelligent based VSM controller (AIVSM) designed to overcome these limitations. The AIVSM system leverages artificial neural networks (ANNs) to emulate real SGs. The ANN is trained using a substantial dataset derived from a SG of a diesel generator. Simulation results demonstrate the performance superiority of the AIVSM when compared to a conventional proportional integral (PI) VSM controller and an adaptive VSM controller.</div></div>","PeriodicalId":50630,"journal":{"name":"Computers & Electrical Engineering","volume":"120 ","pages":"Article 109877"},"PeriodicalIF":4.0000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Artificial neural network-based virtual synchronous generator for frequency stability improving of grid integrating distributed generators\",\"authors\":\"Abderrahmane Smahi , Salim Makhloufi\",\"doi\":\"10.1016/j.compeleceng.2024.109877\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The integration of renewable energy sources (RESs) is becoming increasingly prevalent in contemporary power grids. RESs, including distributed generators (DGs), utilize power electronics converters to interface with the grid, contributing to a reduction in grid inertia and an increase in vulnerability to stability issues. This shift has led to a gradual displacement of the traditional role of synchronous generators (SGs) in providing frequency regulation, with power electronics converters such as inverters taking on a more prominent role. Virtual synchronous generators (VSGs) or virtual synchronous machines (VSMs) offer a solution by emulating SG behavior in power electronics converters. However, these techniques encounter limitations in mathematical calculations and precision. This article proposes an artificial intelligent based VSM controller (AIVSM) designed to overcome these limitations. The AIVSM system leverages artificial neural networks (ANNs) to emulate real SGs. The ANN is trained using a substantial dataset derived from a SG of a diesel generator. Simulation results demonstrate the performance superiority of the AIVSM when compared to a conventional proportional integral (PI) VSM controller and an adaptive VSM controller.</div></div>\",\"PeriodicalId\":50630,\"journal\":{\"name\":\"Computers & Electrical Engineering\",\"volume\":\"120 \",\"pages\":\"Article 109877\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Electrical Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0045790624008036\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Electrical Engineering","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045790624008036","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Artificial neural network-based virtual synchronous generator for frequency stability improving of grid integrating distributed generators
The integration of renewable energy sources (RESs) is becoming increasingly prevalent in contemporary power grids. RESs, including distributed generators (DGs), utilize power electronics converters to interface with the grid, contributing to a reduction in grid inertia and an increase in vulnerability to stability issues. This shift has led to a gradual displacement of the traditional role of synchronous generators (SGs) in providing frequency regulation, with power electronics converters such as inverters taking on a more prominent role. Virtual synchronous generators (VSGs) or virtual synchronous machines (VSMs) offer a solution by emulating SG behavior in power electronics converters. However, these techniques encounter limitations in mathematical calculations and precision. This article proposes an artificial intelligent based VSM controller (AIVSM) designed to overcome these limitations. The AIVSM system leverages artificial neural networks (ANNs) to emulate real SGs. The ANN is trained using a substantial dataset derived from a SG of a diesel generator. Simulation results demonstrate the performance superiority of the AIVSM when compared to a conventional proportional integral (PI) VSM controller and an adaptive VSM controller.
期刊介绍:
The impact of computers has nowhere been more revolutionary than in electrical engineering. The design, analysis, and operation of electrical and electronic systems are now dominated by computers, a transformation that has been motivated by the natural ease of interface between computers and electrical systems, and the promise of spectacular improvements in speed and efficiency.
Published since 1973, Computers & Electrical Engineering provides rapid publication of topical research into the integration of computer technology and computational techniques with electrical and electronic systems. The journal publishes papers featuring novel implementations of computers and computational techniques in areas like signal and image processing, high-performance computing, parallel processing, and communications. Special attention will be paid to papers describing innovative architectures, algorithms, and software tools.