黎曼曼体上扩散的共变朗格文方程

IF 1 4区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Lajos Diósi
{"title":"黎曼曼体上扩散的共变朗格文方程","authors":"Lajos Diósi","doi":"10.1016/S0034-4877(24)00073-9","DOIUrl":null,"url":null,"abstract":"<div><div>The covariant form of the multivariable diffusion-drift process is described by the covariant Fokker–Planck equation using the standard toolbox of Riemann geometry. The covariant form of the adapted Langevin stochastic differential equation is long sought after in both physics and mathematics. We show that the simplest covariant Stratonovich stochastic differential equation depending on the local orthogonal frame (cf. vielbein) becomes the desired covariant Langevin equation provided we impose an additional covariant constraint: the vectors of the frame must be divergence-free.</div></div>","PeriodicalId":49630,"journal":{"name":"Reports on Mathematical Physics","volume":"94 2","pages":"Pages 143-148"},"PeriodicalIF":1.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Covariant Langevin Equation of Diffusion on Riemannian Manifolds\",\"authors\":\"Lajos Diósi\",\"doi\":\"10.1016/S0034-4877(24)00073-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The covariant form of the multivariable diffusion-drift process is described by the covariant Fokker–Planck equation using the standard toolbox of Riemann geometry. The covariant form of the adapted Langevin stochastic differential equation is long sought after in both physics and mathematics. We show that the simplest covariant Stratonovich stochastic differential equation depending on the local orthogonal frame (cf. vielbein) becomes the desired covariant Langevin equation provided we impose an additional covariant constraint: the vectors of the frame must be divergence-free.</div></div>\",\"PeriodicalId\":49630,\"journal\":{\"name\":\"Reports on Mathematical Physics\",\"volume\":\"94 2\",\"pages\":\"Pages 143-148\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reports on Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0034487724000739\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reports on Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0034487724000739","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

多变量扩散漂移过程的协变形式由协变福克-普朗克方程利用黎曼几何的标准工具箱来描述。物理学和数学界长期以来一直在寻求改编朗之文随机微分方程的协变形式。我们的研究表明,最简单的协变斯特拉托诺维奇随机微分方程取决于局部正交框架(参见 vielbein),只要我们施加额外的协变约束:框架的矢量必须是无发散的,它就会变成所需的协变朗格文方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Covariant Langevin Equation of Diffusion on Riemannian Manifolds
The covariant form of the multivariable diffusion-drift process is described by the covariant Fokker–Planck equation using the standard toolbox of Riemann geometry. The covariant form of the adapted Langevin stochastic differential equation is long sought after in both physics and mathematics. We show that the simplest covariant Stratonovich stochastic differential equation depending on the local orthogonal frame (cf. vielbein) becomes the desired covariant Langevin equation provided we impose an additional covariant constraint: the vectors of the frame must be divergence-free.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Reports on Mathematical Physics
Reports on Mathematical Physics 物理-物理:数学物理
CiteScore
1.80
自引率
0.00%
发文量
40
审稿时长
6 months
期刊介绍: Reports on Mathematical Physics publish papers in theoretical physics which present a rigorous mathematical approach to problems of quantum and classical mechanics and field theories, relativity and gravitation, statistical physics, thermodynamics, mathematical foundations of physical theories, etc. Preferred are papers using modern methods of functional analysis, probability theory, differential geometry, algebra and mathematical logic. Papers without direct connection with physics will not be accepted. Manuscripts should be concise, but possibly complete in presentation and discussion, to be comprehensible not only for mathematicians, but also for mathematically oriented theoretical physicists. All papers should describe original work and be written in English.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信