{"title":"分析带有记忆核的非线性积分微分方程中的逆向问题","authors":"M.J. Huntul","doi":"10.1016/j.rinam.2024.100517","DOIUrl":null,"url":null,"abstract":"<div><div>This paper focuses on the backward problem related to an integro-differential equation with a general convolutional derivative in time and nonlinear source terms. The existence, uniqueness, and regularity of the mild solution to the proposed problem are established under certain assumptions in a suitable space. The proposed problem is ill-posed in the sense of Hadamard. Moreover, the Fourier truncation method is used to construct a regularized solution. Finally, the convergence rate between the regularized solution and the exact solution is determined.</div></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"24 ","pages":"Article 100517"},"PeriodicalIF":1.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analyzing inverse backward problem in nonlinear integro-differential equation with memory kernel\",\"authors\":\"M.J. Huntul\",\"doi\":\"10.1016/j.rinam.2024.100517\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper focuses on the backward problem related to an integro-differential equation with a general convolutional derivative in time and nonlinear source terms. The existence, uniqueness, and regularity of the mild solution to the proposed problem are established under certain assumptions in a suitable space. The proposed problem is ill-posed in the sense of Hadamard. Moreover, the Fourier truncation method is used to construct a regularized solution. Finally, the convergence rate between the regularized solution and the exact solution is determined.</div></div>\",\"PeriodicalId\":36918,\"journal\":{\"name\":\"Results in Applied Mathematics\",\"volume\":\"24 \",\"pages\":\"Article 100517\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590037424000876\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590037424000876","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Analyzing inverse backward problem in nonlinear integro-differential equation with memory kernel
This paper focuses on the backward problem related to an integro-differential equation with a general convolutional derivative in time and nonlinear source terms. The existence, uniqueness, and regularity of the mild solution to the proposed problem are established under certain assumptions in a suitable space. The proposed problem is ill-posed in the sense of Hadamard. Moreover, the Fourier truncation method is used to construct a regularized solution. Finally, the convergence rate between the regularized solution and the exact solution is determined.