基于深度卷积字典学习的三维地震去噪

IF 1.4 Q2 MATHEMATICS, APPLIED
Yuntong Li, Lina Liu
{"title":"基于深度卷积字典学习的三维地震去噪","authors":"Yuntong Li,&nbsp;Lina Liu","doi":"10.1016/j.rinam.2024.100516","DOIUrl":null,"url":null,"abstract":"<div><div>Dictionary learning (DL) has been widely used for seismic data denoising. However, it is associated with the following challenges. First, learning a dictionary from one dataset cannot be applied to another dataset and requires setting learning and denoising parameters, which is not adaptive. Second, the DL method based on sparse constraints adds sparse regularization terms to the coefficients, while seismic data only has many coefficients close to zero, which can be approximated as sparse. To overcome these challenges, we propose a seismic data denoising approach using deep convolutional dictionary learning(DCDL) that integrates the explanatory power of DL with the robust learning capacity of deep neural networks. The proposed approach replaces sparse priors with coefficient priors learned from the training dataset and system learns adaptive dictionaries for each seismic datapoint to maintain the data structure. Synthetic and field data in the experiment demonstrate that our method effectively suppresses random noise and maintains seismic data events.</div></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"24 ","pages":"Article 100516"},"PeriodicalIF":1.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Three-dimensional seismic denoising based on deep convolutional dictionary learning\",\"authors\":\"Yuntong Li,&nbsp;Lina Liu\",\"doi\":\"10.1016/j.rinam.2024.100516\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Dictionary learning (DL) has been widely used for seismic data denoising. However, it is associated with the following challenges. First, learning a dictionary from one dataset cannot be applied to another dataset and requires setting learning and denoising parameters, which is not adaptive. Second, the DL method based on sparse constraints adds sparse regularization terms to the coefficients, while seismic data only has many coefficients close to zero, which can be approximated as sparse. To overcome these challenges, we propose a seismic data denoising approach using deep convolutional dictionary learning(DCDL) that integrates the explanatory power of DL with the robust learning capacity of deep neural networks. The proposed approach replaces sparse priors with coefficient priors learned from the training dataset and system learns adaptive dictionaries for each seismic datapoint to maintain the data structure. Synthetic and field data in the experiment demonstrate that our method effectively suppresses random noise and maintains seismic data events.</div></div>\",\"PeriodicalId\":36918,\"journal\":{\"name\":\"Results in Applied Mathematics\",\"volume\":\"24 \",\"pages\":\"Article 100516\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590037424000864\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590037424000864","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

字典学习(DL)已被广泛用于地震数据去噪。然而,它也面临以下挑战。首先,从一个数据集学习字典不能应用于另一个数据集,并且需要设置学习和去噪参数,这不是自适应的。其次,基于稀疏约束的 DL 方法为系数添加了稀疏正则化项,而地震数据只有许多系数接近零,可以近似为稀疏。为了克服这些挑战,我们提出了一种使用深度卷积字典学习(DCDL)的地震数据去噪方法,该方法整合了 DL 的解释能力和深度神经网络的鲁棒学习能力。所提出的方法用从训练数据集学习到的系数前置替换了稀疏前置,系统为每个地震数据点学习自适应字典,以保持数据结构。实验中的合成数据和野外数据表明,我们的方法能有效抑制随机噪声,并保持地震数据事件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Three-dimensional seismic denoising based on deep convolutional dictionary learning
Dictionary learning (DL) has been widely used for seismic data denoising. However, it is associated with the following challenges. First, learning a dictionary from one dataset cannot be applied to another dataset and requires setting learning and denoising parameters, which is not adaptive. Second, the DL method based on sparse constraints adds sparse regularization terms to the coefficients, while seismic data only has many coefficients close to zero, which can be approximated as sparse. To overcome these challenges, we propose a seismic data denoising approach using deep convolutional dictionary learning(DCDL) that integrates the explanatory power of DL with the robust learning capacity of deep neural networks. The proposed approach replaces sparse priors with coefficient priors learned from the training dataset and system learns adaptive dictionaries for each seismic datapoint to maintain the data structure. Synthetic and field data in the experiment demonstrate that our method effectively suppresses random noise and maintains seismic data events.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Results in Applied Mathematics
Results in Applied Mathematics Mathematics-Applied Mathematics
CiteScore
3.20
自引率
10.00%
发文量
50
审稿时长
23 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信