{"title":"为主动可重构智能表面辅助多输入多输出 ISAC 系统设计发射波形和反射波束成形","authors":"Hongtao Li, Xu He, Shengyao Chen, Qi Feng, Sirui Tian, Feng Xi","doi":"10.1016/j.sigpro.2024.109795","DOIUrl":null,"url":null,"abstract":"<div><div>This article discusses the active reconfigurable intelligent surface (ARIS)-aided integrated sensing and communication (ISAC) system for non-line-of-sight (NLoS) target sensing in cluttered environments while performing multi-user communication. To optimize sensing and communication performance simultaneously, we jointly design the shared transmit waveform, ARIS reflection coefficients and radar receive filter by using the multi-user interference and the reciprocal of radar output signal-to-interference-plus-noise ratio as metrics. Limited by practical requirements, the transmit waveform suffers from constant modulus or total energy constraints and the ARIS is subject to both maximum power and amplification gain constraints. Based on these considerations, the proposed codesign is formulated into a nonconvex constrained fractional function minimization problem. To tackle it effectively, we first translate the fractional objective into an integral form by employing Dinkelbach transform and then propose an alternating optimization-based algorithm, where the transmit waveform and ARIS reflection coefficients are respectively optimized by the customized algorithms based on the consensus alternating direction method of multipliers, and the receive filter has a closed-form optimal solution. Numerical results demonstrate that the ARIS-aided ISAC concurrently achieve superior NLoS sensing and communication performance to passive reconfigurable intelligent surface-aided and traditional ISACs in cluttered environments, regardless of waveform constraints and sensing-communication trade-off factor.</div></div>","PeriodicalId":49523,"journal":{"name":"Signal Processing","volume":"230 ","pages":"Article 109795"},"PeriodicalIF":3.4000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Codesign of transmit waveform and reflective beamforming for active reconfigurable intelligent surface-aided MIMO ISAC system\",\"authors\":\"Hongtao Li, Xu He, Shengyao Chen, Qi Feng, Sirui Tian, Feng Xi\",\"doi\":\"10.1016/j.sigpro.2024.109795\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This article discusses the active reconfigurable intelligent surface (ARIS)-aided integrated sensing and communication (ISAC) system for non-line-of-sight (NLoS) target sensing in cluttered environments while performing multi-user communication. To optimize sensing and communication performance simultaneously, we jointly design the shared transmit waveform, ARIS reflection coefficients and radar receive filter by using the multi-user interference and the reciprocal of radar output signal-to-interference-plus-noise ratio as metrics. Limited by practical requirements, the transmit waveform suffers from constant modulus or total energy constraints and the ARIS is subject to both maximum power and amplification gain constraints. Based on these considerations, the proposed codesign is formulated into a nonconvex constrained fractional function minimization problem. To tackle it effectively, we first translate the fractional objective into an integral form by employing Dinkelbach transform and then propose an alternating optimization-based algorithm, where the transmit waveform and ARIS reflection coefficients are respectively optimized by the customized algorithms based on the consensus alternating direction method of multipliers, and the receive filter has a closed-form optimal solution. Numerical results demonstrate that the ARIS-aided ISAC concurrently achieve superior NLoS sensing and communication performance to passive reconfigurable intelligent surface-aided and traditional ISACs in cluttered environments, regardless of waveform constraints and sensing-communication trade-off factor.</div></div>\",\"PeriodicalId\":49523,\"journal\":{\"name\":\"Signal Processing\",\"volume\":\"230 \",\"pages\":\"Article 109795\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165168424004158\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165168424004158","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Codesign of transmit waveform and reflective beamforming for active reconfigurable intelligent surface-aided MIMO ISAC system
This article discusses the active reconfigurable intelligent surface (ARIS)-aided integrated sensing and communication (ISAC) system for non-line-of-sight (NLoS) target sensing in cluttered environments while performing multi-user communication. To optimize sensing and communication performance simultaneously, we jointly design the shared transmit waveform, ARIS reflection coefficients and radar receive filter by using the multi-user interference and the reciprocal of radar output signal-to-interference-plus-noise ratio as metrics. Limited by practical requirements, the transmit waveform suffers from constant modulus or total energy constraints and the ARIS is subject to both maximum power and amplification gain constraints. Based on these considerations, the proposed codesign is formulated into a nonconvex constrained fractional function minimization problem. To tackle it effectively, we first translate the fractional objective into an integral form by employing Dinkelbach transform and then propose an alternating optimization-based algorithm, where the transmit waveform and ARIS reflection coefficients are respectively optimized by the customized algorithms based on the consensus alternating direction method of multipliers, and the receive filter has a closed-form optimal solution. Numerical results demonstrate that the ARIS-aided ISAC concurrently achieve superior NLoS sensing and communication performance to passive reconfigurable intelligent surface-aided and traditional ISACs in cluttered environments, regardless of waveform constraints and sensing-communication trade-off factor.
期刊介绍:
Signal Processing incorporates all aspects of the theory and practice of signal processing. It features original research work, tutorial and review articles, and accounts of practical developments. It is intended for a rapid dissemination of knowledge and experience to engineers and scientists working in the research, development or practical application of signal processing.
Subject areas covered by the journal include: Signal Theory; Stochastic Processes; Detection and Estimation; Spectral Analysis; Filtering; Signal Processing Systems; Software Developments; Image Processing; Pattern Recognition; Optical Signal Processing; Digital Signal Processing; Multi-dimensional Signal Processing; Communication Signal Processing; Biomedical Signal Processing; Geophysical and Astrophysical Signal Processing; Earth Resources Signal Processing; Acoustic and Vibration Signal Processing; Data Processing; Remote Sensing; Signal Processing Technology; Radar Signal Processing; Sonar Signal Processing; Industrial Applications; New Applications.