Chang Wang, Siyu Wang, Yonger Xue, Yichen Zhong, Haoyuan Li, Xucheng Hou, Diana D. Kang, Zhengwei Liu, Meng Tian, Leiming Wang, Dinglingge Cao, Yang Yu, Jayce Liu, Xiaolin Cheng, Tamara Markovic, Alice Hashemi, Brian H. Kopell, Alexander W. Charney, Eric J. Nestler, Yizhou Dong
{"title":"静脉注射可跨越血脑屏障的共轭物,促进生物大分子向中枢神经系统的转运","authors":"Chang Wang, Siyu Wang, Yonger Xue, Yichen Zhong, Haoyuan Li, Xucheng Hou, Diana D. Kang, Zhengwei Liu, Meng Tian, Leiming Wang, Dinglingge Cao, Yang Yu, Jayce Liu, Xiaolin Cheng, Tamara Markovic, Alice Hashemi, Brian H. Kopell, Alexander W. Charney, Eric J. Nestler, Yizhou Dong","doi":"10.1038/s41587-024-02487-7","DOIUrl":null,"url":null,"abstract":"<p>Delivery of biomacromolecules to the central nervous system (CNS) remains challenging because of the restrictive nature of the blood–brain barrier (BBB). We developed a BBB-crossing conjugate (BCC) system that facilitates delivery into the CNS through γ-secretase-mediated transcytosis. Intravenous administration of a BCC10–oligonucleotide conjugate demonstrated effective transportation of the oligonucleotide across the BBB and gene silencing in wild-type mice, human brain tissues and an amyotrophic lateral sclerosis mouse model.</p>","PeriodicalId":19084,"journal":{"name":"Nature biotechnology","volume":"64 1","pages":""},"PeriodicalIF":33.1000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intravenous administration of blood–brain barrier-crossing conjugates facilitate biomacromolecule transport into central nervous system\",\"authors\":\"Chang Wang, Siyu Wang, Yonger Xue, Yichen Zhong, Haoyuan Li, Xucheng Hou, Diana D. Kang, Zhengwei Liu, Meng Tian, Leiming Wang, Dinglingge Cao, Yang Yu, Jayce Liu, Xiaolin Cheng, Tamara Markovic, Alice Hashemi, Brian H. Kopell, Alexander W. Charney, Eric J. Nestler, Yizhou Dong\",\"doi\":\"10.1038/s41587-024-02487-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Delivery of biomacromolecules to the central nervous system (CNS) remains challenging because of the restrictive nature of the blood–brain barrier (BBB). We developed a BBB-crossing conjugate (BCC) system that facilitates delivery into the CNS through γ-secretase-mediated transcytosis. Intravenous administration of a BCC10–oligonucleotide conjugate demonstrated effective transportation of the oligonucleotide across the BBB and gene silencing in wild-type mice, human brain tissues and an amyotrophic lateral sclerosis mouse model.</p>\",\"PeriodicalId\":19084,\"journal\":{\"name\":\"Nature biotechnology\",\"volume\":\"64 1\",\"pages\":\"\"},\"PeriodicalIF\":33.1000,\"publicationDate\":\"2024-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1038/s41587-024-02487-7\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41587-024-02487-7","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Intravenous administration of blood–brain barrier-crossing conjugates facilitate biomacromolecule transport into central nervous system
Delivery of biomacromolecules to the central nervous system (CNS) remains challenging because of the restrictive nature of the blood–brain barrier (BBB). We developed a BBB-crossing conjugate (BCC) system that facilitates delivery into the CNS through γ-secretase-mediated transcytosis. Intravenous administration of a BCC10–oligonucleotide conjugate demonstrated effective transportation of the oligonucleotide across the BBB and gene silencing in wild-type mice, human brain tissues and an amyotrophic lateral sclerosis mouse model.
期刊介绍:
Nature Biotechnology is a monthly journal that focuses on the science and business of biotechnology. It covers a wide range of topics including technology/methodology advancements in the biological, biomedical, agricultural, and environmental sciences. The journal also explores the commercial, political, ethical, legal, and societal aspects of this research.
The journal serves researchers by providing peer-reviewed research papers in the field of biotechnology. It also serves the business community by delivering news about research developments. This approach ensures that both the scientific and business communities are well-informed and able to stay up-to-date on the latest advancements and opportunities in the field.
Some key areas of interest in which the journal actively seeks research papers include molecular engineering of nucleic acids and proteins, molecular therapy, large-scale biology, computational biology, regenerative medicine, imaging technology, analytical biotechnology, applied immunology, food and agricultural biotechnology, and environmental biotechnology.
In summary, Nature Biotechnology is a comprehensive journal that covers both the scientific and business aspects of biotechnology. It strives to provide researchers with valuable research papers and news while also delivering important scientific advancements to the business community.